

Welcome to the PyWPS 4.2.4 documentation!

PyWPS is a server side implementation of the OGC Web Processing Service
(OGC WPS) standard [http://opengeospatial.org/standards/wps], using the
Python [http://python.org] programming language. PyWPS is currently
supporting WPS 1.0.0. Support for the version 2.0.0. of OGC WPS standard is
presently being planned.

Like the bicycle in the logo, PyWPS is:

	simple to maintain

	fast to drive

	able to carry a lot

	easy to hack

Mount your bike and setup your PyWPS instance!

Todo

	request queue management (probably linked from documentation)

	inputs and outputs IOhandler class description (file, stream, …)

Contents:

	OGC Web Processing Service (OGC WPS)
	Process

	Data inputs and outputs
	LiteralData

	ComplexData

	BoundingBoxData

	Passing data to process instance

	Synchronous versus asynchronous process request

	Process status

	Request encoding, HTTP GET and POST

	PyWPS
	PyWPS philosophy

	Why is PyWPS there

	PyWPS History

	Installation
	Dependencies and requirements

	Download and install

	The Flask service and its sample processes

	Configuration
	[metadata:main]

	[server]

	[processing]

	[logging]

	[grass]

	[s3]
	Sample file

	Processes
	Writing a Process

	Example vector buffer process

	Declaring inputs and outputs
	LiteralData

	ComplexData

	ComplexData Format and input validation

	BoundingBoxData

	Accessing the inputs and outputs in the handler method

	Progress and status report

	Returning large data

	Returning multiple files
	Example process

	Process Exceptions
	Example process

	Process deployment

	Running the dev server

	Supporting multiple languages

	Automated process documentation

	Deployment to a production server
	Deploying an individual PyWPS instance

	Creating a PyWPS WSGI instance

	Deployment on Apache2 httpd server

	Deployment on Nginx-Gunicorn

	Testing the deployment of a PyWPS instance

	Migrating from PyWPS 3.x to 4.x
	Configuration file

	Single process definition

	Inputs and outputs data manipulation

	Deployment

	Sample processes

	Needed steps summarization

	PyWPS and external tools
	GRASS GIS

	OpenLayers WPS client

	ZOO-Project

	QGIS WPS Client

	Extensions
	Job Scheduler Extension
	Interactions of PyWPS with a scheduler system

	Docker Container Extension

	PyWPS API Doc
	Process

	Inputs and outputs
	LiteralData

	ComplexData

	BoundingBoxData

	Request and response objects

	Processing

	Contributing to PyWPS
	Code of Conduct

	Contributions and Licensing
	GitHub Commit Access

	GitHub Pull Requests

	Contributions and Licensing Agreement Template

	GitHub

	Code Overview

	Documentation

	Bugs

	Forking PyWPS

	Development
	GitHub Commit Guidelines

	Coding Guidelines

	Submitting a Pull Request

	Release Packaging

	Exceptions

Indices and tables

	Index

	Module Index

	Search Page

OGC Web Processing Service (OGC WPS)

OGC Web Processing Service [https://opengeospatial.org/standards] standard
provides rules for standardizing how inputs and outputs (requests and
responses) for geospatial processing services. The standard also defines how a
client can request the execution of a process, and how the output from the
process is handled. It defines an interface that facilitates the publishing of
geospatial processes and clients discovery of and binding to those processes.
The data required by the WPS can be delivered across a network or they can be
available at the server.

Note

This description is mainly refering to 1.0.0 version standard, since
PyWPS implements this version only. There is also 2.0.0 version, which
we are about to implement in near future.

WPS is intended to be state-less protocol (like any OGC services). For every
request-response action, the negotiation between the server and the client has
to start. There is no official way, how to make the server “remember”, what was
before, there is no communication history between the server and the client.

Process

A process p is a function that for each input returns a corresponding output:

\[p: X \rightarrow Y\]

where X denotes the domain of arguments x and Y denotes the co-domain of values y.

Within the specification, process arguments are referred to as process inputs and result
values are referred to as process outputs. Processes that have no process inputs represent
value generators that deliver constant or random process outputs.

Process is just some geospatial operation, which has it’s in- and outputs and
which is deployed on the server. It can be something relatively simple (adding
two raster maps together) or very complicated (climate change model). It can
take short time (seconds) or long (days) to be calculated. Process is, what you,
as PyWPS user, want to expose to other people and let their data processed.

Every process has the following properties:

	Identifier

	Unique process identifier

	Title

	Human readable title

	Abstract

	Longer description of the process, what it does, how is it supposed to be
used

And a list of inputs and outputs.

Data inputs and outputs

OGC WPS defines 3 types of data inputs and outputs: LiteralData,
ComplexData and BoundingBoxData.

All data types do need to have following properties:

	Identifier

	Unique input identifier

	Title

	Human readable title

	Abstract

	Longer description of data input or output, so that the user could get
oriented.

	minOccurs

	Minimal occurrence of the input (e.g. there can be more bands of raster file
and they all can be passed as input using the same identifier)

	maxOccurs

	Maxium number of times, the input or output is present

Depending on the data type (Literal, Complex, BoundingBox), other attributes
might occur too.

LiteralData

Literal data is any text string, usually short. It’s used for passing single
parameters like numbers or text parameters. WPS enables to the server, to define
allowedValues - list or intervals of allowed values, as well as data type
(integer, float, string). Additional attributes can be set, such as units or
encoding.

ComplexData

Complex data are usually raster or vector files, but basically any (usually
file based) data, which are usually processed (or result of the process). The
input can be specified more using mimeType, XML schema or encoding (such
as base64 for raster data.

Note

PyWPS (like every server) supports limited list mimeTypes. In case
you need some new format, just create pull request in our repository.
Refer pywps.inout.formats.FORMATS for more details.

Usually, the minimum requirement for input data identification is mimeType.
That usually is application/gml+xml for GML [https://opengeospatial.org/standards/gml]-encoded vector files, image/tiff;
subtype=geotiff for raster files. The input or output can also be result of any
OGC OWS service.

BoundingBoxData

Todo

add reference to OGC OWS Common spec

BoundingBox data are specified in OGC OWS Common specification as two pairs of
coordinate (for 2D and 3D space). They can either be encoded in WGS84 or EPSG
code can be passed too. They are intended to be used as definition of the target
region.

Note

In real life, BoundingBox data are not that commonly used

Passing data to process instance

There are typically 3 approaches to pass the input data from the client to the
server:

	Data are on the server already

	In the first case, the data are already stored on the server (from the point
of view of the client). This is the simplest case.

	Data are send to the server along with the request

	In this case, the data are directly part of the XML encoded document send via
HTTP POST. Some clients/servers are expecting the data to be inserted in
CDATA section. The data can be text based (JSON), XML based (GML) or even
raster based - in this case, they are usually encoded using base64 [https://docs.python.org/3/library/base64.html].

	Reference link to target service is passed

	Client does not have to pass the data itself, client can just send reference
link to target data service (or file). In such case, for example OGC WFS
GetFeatureType URL can be passed and server will download the data
automatically.

Although this is usually used for ComplexData input type, it can be used
for literal and bounding box data too.

Synchronous versus asynchronous process request

There are two modes of process instance execution: Synchronous and asynchronous.

	Synchronous mode

	The client sends the Execute request to the server and waits with open
server connection, till the process is calculated and final response is
returned back. This is useful for fast calculations which do not take
longer then a couple of seconds (Apache2 httpd server uses 300 seconds [https://httpd.apache.org/docs/2.4/mod/core.html#timeout] as default value for ConnectionTimeout).

	Asynchronous mode

	Client sends the Execute request with explicit request for asynchronous
mode. If supported by the process (in PyWPS, we have a configuration for
that), the server returns back ProcessAccepted response immediately with
URL, where the client can regularly check for process execution status.

Note

As you see, using WPS, the client has to apply pull method for
the communication with the server. Client has to be the active element
in the communication - server is just responding to clients request and
is not actively pushing any information (like it would if e.g. web
sockets would be implemented).

Process status

Process status is generic status of the process instance, reporting to the
client, how does the calculation go. There are 4 types of process statuses

	ProcessAccepted

	Process was accepted by the server and the process execution will start
soon.

	ProcessStarted

	Process calculation has started. The status also contains report about
percentDone - calculation progress and statusMessage - text reporting
current calculation state (example: “Caculationg buffer” - 33%).

	ProcessFinished

	Process instance performed the calculation successfully and the final
Execute response is returned to the client and/or stored on final location

	ProcessFailed

	There was something wrong with the process instance and the server reports
server exception (see pywps.exceptions) along with the message,
what could possibly go wrong.

Request encoding, HTTP GET and POST

The request can be encoded either using key-value pairs (KVP) or an XML payload.

	Key-value pairs

	is usually sent via HTTP GET request method [https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods]
encoded directly in the URL. The keys and values are separated with = sign and
each pair is separated with & sign (with ? at the beginning of the request.
Example could be the get capabilities reques:

http://server.domain/wps?service=WPS&request=GetCapabilities&version=1.0.0

In this example, there are 3 pairs of input parameter: service, request and
version with values WPS, GetCapabilities and 1.0.0 respectively.

	XML payload

	is XML data sent via HTTP POST request method [https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods].
The XML document can be more rich, having more parameters, better to be
parsed in complex structures. The Client can also encode entire datasets to the
request, including raster (encoded using base64) or vector data (usually as GML file).:

<?xml version="1.0" encoding="UTF-8"?>
<wps:GetCapabilities language="cz" service="WPS" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsGetCapabilities_request.xsd">
 <wps:AcceptVersions>
 <ows:Version>1.0.0</ows:Version>
 </wps:AcceptVersions>
</wps:GetCapabilities>

Note

Even it might be looking more complicated to use XML over KVP, for
some complex request it usually is more safe and efficient to use XML
encoding. The KVP way, especially for WPS Execute request can be tricky
and lead to unpredictable errors.

PyWPS

Todo

	how are things organised

	storage

	dblog

	relationship to grass gis

PyWPS philosophy

PyWPS is simple, fast to run, has low requirements on system resources, is
modular. PyWPS solves the problem of exposing geospatial calculations to the
web, taking care of security, data download, request acceptance, process running
and final response construction. Therefore PyWPS has a bicycle in its logo.

Why is PyWPS there

Many scientific researchers and geospatial services provider need to setup
system, where the geospatial operations would be calculated on the server, while
the system resources could be exposed to clients. PyWPS is here, so that you
could set up the server fast, deploy your awesome geospatial calculation and
expose it to the world. PyWPS is written in Python with support for many
geospatial tools out there, like GRASS GIS, R-Project or GDAL. Python is the
most geo-positive scripting language out there, therefore all the best tools
have their bindings to Python in their pocket.

PyWPS History

PyWPS started in 2006 as scholarship funded by German Foundation for
Environment [http://dbu.de]. During the years, it grow to version 4.0.x. In
2015, we officially entered to OSGeo [https://osgeo.org] incubation process.
In 2016, Project Steering Committee [https://pywps.org/development/psc.html] has started.
PyWPS was originally hosted by the Wald server [http://wald.intevation.org],
nowadays, we moved to GeoPython group on GitHub [https://gitub.com/geopython/]. Since 2016, we also have new domain PyWPS.org [https://pywps.org].

You can find more at history page [https://pywps.org/history].

Installation

Note

PyWPS is not tested on the MS Windows platform. Please join the
development team if you need this platform to be supported. This is mainly
because of the lack of a multiprocessing library. It is used to process
asynchronous execution, i.e., when making requests storing the response
document and updating a status document displaying the progress of
execution.

Dependencies and requirements

PyWPS runs on Python 2.7, 3.3 or higher. PyWPS is currently tested and
developed on Linux (mostly Ubuntu). In the documentation we take this
distribution as reference.

Prior to installing PyWPS, Git and the Python bindings for GDAL must be
installed in the system. In Debian based systems these packages can be
installed with a tool like apt:

$ sudo apt-get install git python-gdal

Alternatively, if GDAL is already installed on your system you can
install the GDAL Python bindings via pip with:

$ pip install GDAL==1.10.0 --global-option=build_ext --global-option="-I/usr/include/gdal"

Download and install

	Using pip

	The easiest way to install PyWPS is using the Python Package Index
(PIP). It fetches the source code from the repository and installs it
automatically in the system. This might require superuser permissions
(e.g. sudo in Debian based systems):

$ sudo pip install -e git+https://github.com/geopython/pywps.git@master#egg=pywps-dev

Todo

	document Debian / Ubuntu package support

	Manual installation

	Manual installation of PyWPS requires downloading [https://pywps.org/download] the
source code followed by usage of the setup.py script. An example again for Debian based systems (note
the usage of sudo for install):

$ tar zxf pywps-x.y.z.tar.gz
$ cd pywps-x.y.z/

Then install the package dependencies using pip:

$ pip install -r requirements.txt
$ pip install -r requirements-gdal.txt # for GDAL Python bindings (if python-gdal is not already installed by `apt-get`)
$ pip install -r requirements-dev.txt # for developer tasks

To install PyWPS system-wide run:

$ sudo python setup.py install

	For Developers

	Installation of the source code using Git and Python’s virtualenv tool:

$ virtualenv my-pywps-env
$ cd my-pywps-env
$ source bin/activate
$ git clone https://github.com/geopython/pywps.git
$ cd pywps

Then install the package dependencies using pip as described in the Manual installation section. To install
PyWPS:

$ python setup.py install

Note that installing PyWPS via a virtualenv environment keeps the installation of PyWPS and its
dependencies isolated to the virtual environment and does not affect other parts of the system. This
installation option is handy for development and / or users who may not have system-wide administration
privileges.

The Flask service and its sample processes

To use PyWPS the user must code processes and publish them through a service.
An example service is available that makes up a good starting point for first time
users. It launches a very simple built-in server (relying on the Flask Python
Microframework [http://flask.pocoo.org/]), which is good enough for testing but probably not
appropriate for production. This example service can be cloned directly into the user
area:

$ git clone https://github.com/geopython/pywps-flask.git

It may be run right away through the demo.py script. First time users should
start by studying the structure of this project and then code their own processes.

There is also an example service

Full more details please consult the Processes section. The example service
contains some basic processes too, so you could get started with some examples
(like area, buffer, feature_count and grassbuffer). These processes are
to be taken just as inspiration and code documentation - most of them do not
make any sense (e.g. sayhello).

Configuration

PyWPS is configured using a configuration file. The file uses the
ConfigParser [https://wiki.python.org/moin/ConfigParserExamples] format, with
interpolation initialised using os.environ.

New in version 4.0.0.

Warning

Compatibility with PyWPS 3.x: major changes have been made
to the config file in order to allow for shared configurations with PyCSW [https://pycsw.org/] and other projects.

The configuration file has several sections:

	metadata:main for the server metadata inputs

	server for server configuration

	processing for processing backend configuration

	logging for logging configuration

	grass for optional configuration to support GRASS GIS [https://grass.osgeo.org]

	s3 for optional configuration to support AWS S3 storage

PyWPS ships with a sample configuration file (default-sample.cfg).
A similar file is also available in the flask service as
described in The Flask service and its sample processes section.

Copy the file to default.cfg and edit the following:

[metadata:main]

The [metadata:main] section was designed according to the PyCSW project
configuration file [https://docs.pycsw.org/en/latest/configuration.html].

	identification_title

	the title of the service

	identification_abstract

	some descriptive text about the service

	identification_keywords

	comma delimited list of keywords about the service

	identification_keywords_type

	keyword type as per the ISO 19115 MD_KeywordTypeCode codelist [http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode]).
Accepted values are discipline, temporal, place, theme,
stratum

	identification_fees

	fees associated with the service

	identification_accessconstraints

	access constraints associated with the service

	provider_name

	the name of the service provider

	provider_url

	the URL of the service provider

	contact_name

	the name of the provider contact

	contact_position

	the position title of the provider contact

	contact_address

	the address of the provider contact

	contact_city

	the city of the provider contact

	contact_stateorprovince

	the province or territory of the provider contact

	contact_postalcode

	the postal code of the provider contact

	contact_country

	the country of the provider contact

	contact_phone

	the phone number of the provider contact

	contact_fax

	the facsimile number of the provider contact

	contact_email

	the email address of the provider contact

	contact_url

	the URL to more information about the provider contact

	contact_hours

	the hours of service to contact the provider

	contact_instructions

	the how to contact the provider contact

	contact_role

	the role of the provider contact as per the ISO 19115 CI_RoleCode codelist [http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_RoleCode]).
Accepted values are author, processor, publisher, custodian,
pointOfContact, distributor, user, resourceProvider,
originator, owner, principalInvestigator

[server]

	url

	the URL of the WPS service endpoint

	language

	a comma-separated list of ISO 639-1 language and ISO 3166-1 alpha2 country
code of the service
(e.g. en-CA, fr-CA, en-US)

	encoding

	the content type encoding (e.g. ISO-8859-1, see
https://docs.python.org/2/library/codecs.html#standard-encodings). Default
value is ‘UTF-8’

	parallelprocesses

	maximum number of parallel running processes - set this number carefully.
The effective number of parallel running processes is limited by the number
of cores in the processor of the hosting machine. As well, speed and
response time of hard drives impact ultimate processing performance. A
reasonable number of parallel running processes is not higher than the
number of processor cores.

	maxrequestsize

	maximal request size. 0 for no limit

	maxprocesses

	maximal number of requests being stored in queue, waiting till they can be
processed (see parallelprocesses configuration option).

	workdir

	a directory to store all temporary files (which should be always deleted,
once the process is finished).

	outputpath

	server path where to store output files.

	outputurl

	corresponding URL

	allowedinputpaths

	server paths which are allowed to be used by file URLs. A list of paths
must be seperated by :.

Example: /var/lib/pywps/downloads:/var/lib/pywps/public

By default no input paths are allowed.

	cleantempdir

	flag to enable removal of process temporary workdir after process has finished.

Default = true.

Note

outputpath and outputurl must correspond. outputpath is the name
of the resulting target directory, where all output data files are
stored (with unique names). outputurl is the corresponding full URL,
which is targeting to outputpath directory.

Example: outputpath=/var/www/wps/outputs shall correspond with
outputurl=http://foo.bar/wps/outputs

	storagetype

	The type of storage to use when storing status and results. Possible values are: file, s3. Defaults to file.

[processing]

	mode

	the mode/backend used for processing. Possible values are:
default, multiprocessing and scheduler. default is the same as
multiprocessing and is the default value … all processes are executed
using the Python multiprocessing module on the same machine as the PyWPS
service. scheduler is used to enable the job scheduler extension and
process execution is delegated to a configured scheduler system like Slurm
and Grid Engine.

	path

	path to the PyWPS joblauncher executable. This option is only used for
the scheduler backend and is by default set automatically:
os.path.dirname(os.path.realpath(sys.argv[0]))

[logging]

	level

	the logging level (see
https://docs.python.org/3/library/logging.html#logging-levels)

	format

	the format string used by the logging :Formatter: (see
https://docs.python.org/3/library/logging.html#logging.Formatter).
For example: %(asctime)s] [%(levelname)s] %(message)s.

	file

	the full file path to the log file for being able to see possible error
messages.

	database

	Connection string to database where the login about requests/responses is to be stored. We are using SQLAlchemy [https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls]
please use the configuration string. The default is SQLite3 :memory: object, however this has known issues [https://github.com/geopython/pywps/issues?utf8=%E2%9C%93&q=is%3Aissue+async+sqlite] with async processing and should be avoided.

[grass]

	gisbase

	directory of the GRASS GIS instalation, refered as GISBASE [https://grass.osgeo.org/grass73/manuals/variables.html]

[s3]

	bucket

	Name of the bucket to store files in. e.g. my-wps-results

	region

	Region in which the bucket refered to above exists. e.g. us-east-1

	public

	Set this to true if public access to status and result files is desired. Defaults to false.

	prefix

	Prefix to prepend to all file paths written to the S3 bucket by PyWPS. e.g. wps/results

	encrypt

	Set this to true if encryption at rest is desired. Defaults to false

Sample file

[server]
encoding=utf-8
language=en-US
url=http://localhost/wps
maxoperations=30
maxinputparamlength=1024
maxsingleinputsize=
maxrequestsize=3mb
temp_path=/tmp/pywps/
processes_path=
outputurl=/data/
outputpath=/tmp/outputs/
workdir=
allowedinputpaths=/tmp
storagetype=file

[metadata:main]
identification_title=PyWPS Processing Service
identification_abstract=PyWPS is an implementation of the Web Processing Service standard from the Open Geospatial Consortium. PyWPS is written in Python.
identification_keywords=PyWPS,WPS,OGC,processing
identification_keywords_type=theme
identification_fees=NONE
identification_accessconstraints=NONE
provider_name=Organization Name
provider_url=https://pywps.org/
contact_name=Lastname, Firstname
contact_position=Position Title
contact_address=Mailing Address
contact_city=City
contact_stateorprovince=Administrative Area
contact_postalcode=Zip or Postal Code
contact_country=Country
contact_phone=+xx-xxx-xxx-xxxx
contact_fax=+xx-xxx-xxx-xxxx
contact_email=Email Address
contact_url=Contact URL
contact_hours=Hours of Service
contact_instructions=During hours of service. Off on weekends.
contact_role=pointOfContact

[processing]
mode=default

[logging]
level=INFO
file=logs/pywps.log
database=sqlite:///logs/pywps-logs.sqlite3
format=%(asctime)s] [%(levelname)s] file=%(pathname)s line=%(lineno)s module=%(module)s function=%(funcName)s %(message)s

[grass]
gisbase=/usr/local/grass-7.3.svn/

[s3]
bucket=my-org-wps
region=us-east-1
prefix=appname/coolapp/
public=true
encrypt=false

Processes

New in version 4.0.0.

Todo

	Input validation

	IOHandler

PyWPS works with processes and services. A process is a Python Class
containing an handler method and a list of inputs and outputs. A PyWPS
service instance is then a collection of selected processes.

PyWPS does not ship with any processes predefined - it’s on you, as user of
PyWPS to set up the processes of your choice. PyWPS is here to help you
publishing your awesome geospatial operation on the web - it takes care of
communication and security, you then have to add the content.

Note

There are some example processes in the PyWPS-Flask [https://github.com/geopython/pywps-flask] project.

Writing a Process

Note

At this place, you should prepare your environment for final
Deployment to a production server. At least, you should create a single directory with
your processes, which is typically named processes:

$ mkdir processes

In this directory, we will create single python scripts containing
processes.

Processes can be located anywhere in the system as long as their
location is identified in the PYTHONPATH environment
variable, and can be imported in the final server instance.

A processes is coded as a class inheriting from Process.
In the PyWPS-Flask [https://github.com/geopython/pywps-flask] server they are
kept inside the processes folder, usually in separated files.

The instance of a Process needs following attributes to be configured:

	identifier

	unique identifier of the process

	title

	corresponding title

	inputs

	list of process inputs

	outputs

	list of process outputs

	handler

	method which recieves pywps.app.WPSRequest and pywps.response.WPSResponse as inputs.

Example vector buffer process

As an example, we will create a buffer process - which will take a vector
file as the input, create specified the buffer around the data (using Shapely [https://shapely.readthedocs.io]), and return back the result.

Therefore, the process will have two inputs:

	ComplexData input - the vector file

	LiteralData input - the buffer size

And it will have one output:

	ComplexData output - the final buffer

The process can be called demobuffer and we can now start coding it:

$ cd processes
$ $EDITOR demobuffer.py

At the beginning, we have to import the required classes and modules

Here is a very basic example:

	28
29
30
31

	from pywps import Process, LiteralInput, ComplexOutput, ComplexInput, Format
from pywps.app.Common import Metadata
from pywps.validator.mode import MODE
from pywps.inout.formats import FORMATS

As the next step, we define a list of inputs. The first input is
pywps.ComplexInput with the identifier vector, title Vector map
and there is only one allowed format: GML.

The next input is pywps.LiteralInput, with the identifier size and
the data type set to float:

	33
34
35
36
37
38
39
40

	
inpt_vector = ComplexInput(
 'vector',
 'Vector map',
 supported_formats=[Format('application/gml+xml')],
 mode=MODE.STRICT
)

Next we define the output output as pywps.ComplexOutput. This
output supports GML format only.

	42
43
44
45
46

	
out_output = ComplexOutput(
 'output',
 'HelloWorld Output',
 supported_formats=[Format('application/gml+xml')]

Next we create a new list variables for inputs and outputs.

	48
49

	
inputs = [inpt_vector, inpt_size]

Next we define the handler method. In it, geospatial analysis
may happen. The method gets a pywps.app.WPSRequest and a
pywps.response.WPSResponse object as parameters. In our case, we
calculate the buffer around each vector feature using
GDAL/OGR library [https://gdal.org]. We will not got much into the details,
what you should note is how to get input data from the
pywps.app.WPSRequest object and how to set data as outputs in the
pywps.response.WPSResponse object.

	 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

	@staticmethod
def _handler(request, response):
 """Handler method - this method obtains request object and response
 object and creates the buffer
 """

 from osgeo import ogr

 # obtaining input with identifier 'vector' as file name
 input_file = request.inputs['vector'][0].file

 # obtaining input with identifier 'size' as data directly
 size = request.inputs['size'][0].data

 # open file the "gdal way"
 input_source = ogr.Open(input_file)
 input_layer = input_source.GetLayer()
 layer_name = input_layer.GetName()

 # create output file
 driver = ogr.GetDriverByName('GML')
 output_source = driver.CreateDataSource(
 layer_name,
 ["XSISCHEMAURI=http://schemas.opengis.net/gml/2.1.2/feature.xsd"])
 output_layer = output_source.CreateLayer(layer_name, None, ogr.wkbUnknown)

 # get feature count
 count = input_layer.GetFeatureCount()
 index = 0

 # make buffer for each feature
 while index < count:

 response._update_status(WPS_STATUS.STARTED, 'Buffering feature {}'.format(index), float(index) / count)

 # get the geometry
 input_feature = input_layer.GetNextFeature()
 input_geometry = input_feature.GetGeometryRef()

 # make the buffer
 buffer_geometry = input_geometry.Buffer(float(size))

 # create output feature to the file
 output_feature = ogr.Feature(feature_def=output_layer.GetLayerDefn())
 output_feature.SetGeometryDirectly(buffer_geometry)
 output_layer.CreateFeature(output_feature)
 output_feature.Destroy()
 index += 1

 # set output format
 response.outputs['output'].data_format = FORMATS.GML

 # set output data as file name
 response.outputs['output'].file = layer_name

 return response

At the end, we put everything together and create new a DemoBuffer class with
handler, inputs and outputs. It’s based on pywps.Process:

	51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	class DemoBuffer(Process):
 def __init__(self):

 super(DemoBuffer, self).__init__(
 _handler,
 identifier='demobuffer',
 version='1.0.0',
 title='Buffer',
 abstract='This process demonstrates, how to create any process in PyWPS environment',
 metadata=[Metadata('process metadata 1', 'http://example.org/1'),
 Metadata('process metadata 2', 'http://example.org/2')],
 inputs=inputs,
 outputs=outputs,
 store_supported=True,
 status_supported=True
)

Declaring inputs and outputs

Clients need to know which inputs the processes expects. They can be declared
as pywps.Input objects in the Process class declaration:

from pywps import Process, LiteralInput, LiteralOutput

class FooProcess(Process):
 def __init__(self):
 inputs = [
 LiteralInput('foo', data_type='string'),
 ComplexInput('bar', [Format('text/xml')])
]
 outputs = [
 LiteralOutput('foo_output', data_type='string'),
 ComplexOutput('bar_output', [Format('JSON')])
]

 super(FooProcess, self).__init__(
 ...
 inputs=inputs,
 outputs=outputs
)
 ...

Note

A more generic description can be found in OGC Web Processing Service (OGC WPS) chapter.

LiteralData

	LiteralInput

	LiteralOutput

A simple value embedded in the request. The first argument is a
name. The second argument is the type, one of string, float,
integer or boolean.

ComplexData

	ComplexInput

	ComplexOutput

A large data object, for example a layer. ComplexData do have a format
attribute as one of their key properties. It’s either a list of supported
formats or a single (already selected) format. It shall be an instance of
the pywps.inout.formats.Format class.

ComplexData Format and input validation

The ComplexData needs as one of its parameters a list of supported data
formats. They are derived from the Format class. A Format
instance needs, among others, a mime_type parameter, a validate
method – which is used for input data validation – and also a mode
parameter – defining how strict the validation should be (see
pywps.validator.mode.MODE).

The Validate method is up to you, the user, to code. It requires two input
paramers - data_input (a ComplexInput object), and mode. This
methid must return a boolean value indicating whether the input data are
considered valid or not for given mode. You can draw inspiration from the
pywps.validator.complexvalidator.validategml() method.

The good news is: there are already predefined validation methods for the ESRI
Shapefile, GML and GeoJSON formats, using GDAL/OGR. There is also an XML Schema
validaton and a JSON schema validator - you just have to pick the propper
supported formats from the pywps.inout.formats.FORMATS list and set
the validation mode to your ComplexInput object.

Even better news is: you can define custom validation functions and validate
input data according to your needs.

BoundingBoxData

	BoundingBoxInput

	BoundingBoxOutput

BoundingBoxData contain information about the bounding box of the desired area
and coordinate reference system. Interesting attributes of the BoundingBoxData
are:

	crs

	current coordinate reference system

	dimensions

	number of dimensions

	ll

	pair of coordinates (or triplet) of the lower-left corner

	ur

	pair of coordinates (or triplet) of the upper-right corner

Accessing the inputs and outputs in the handler method

Handlers receive as input argument a WPSRequest object. Input
values are found in the inputs dictionary:

@staticmethod
def _handler(request, response):
 name = request.inputs['name'][0].data
 response.outputs['output'].data = 'Hello world %s!' % name
 return response

inputs is a plain Python dictionary.
Most of the inputs and outputs are derived from the IOHandler class.
This enables the user to access the data in four different ways:

	input.file

	Returns a file name - you can access the data using the name of the file
stored on the hard drive.

	input.url

	Return a link to the resource using either the file:// or http:// scheme. The target of the url is not downloaded to the PyWPS server until its content is explicitly accessed through either one of the file, data or stream attributes.

	input.data

	Is the direct link to the data themselves. No need to create a file object
on the hard drive or opening the file and closing it - PyWPS will do
everything for you.

	input.stream

	Provides the IOStream of the data. No need for opening the file, you just
have to read() the data.

Because there could be multiple input values with the same identifier, the
inputs are accessed with an index. For example:

request.inputs['file_input'][0].file
request.inputs['data_input'][0].data
request.inputs['stream_input'][0].stream
url_input = request.inputs['url_input'][0]

As mentioned, if an input is a link to a remote file (an http address), accessing the url attribute simply returns the url’s string, but accessing any other attribute triggers the file’s download:

url_input.url # returns the link as a string (no download)
url_input.file # downloads target and returns the local path
url_input.data # returns the content of the local copy

PyWPS will persistently transform the input (and output) data to the desired
form. You can also set the data for your Output object like output.data = 1
or output.file = “myfile.json” - it works the same way. However, once the source
type is set, it cannot be changed. That is, a ComplexOutput whose data
attribute has been set once has read-only access to the three other attributes
(file, stream and url), while the data attribute can be freely
modified.

Progress and status report

OGC WPS standard enables asynchronous process execution call, that is in
particular useful, when the process execution takes longer time - process
instance is set to background and WPS Execute Response document with ProcessAccepted
messag is returned immediately to the client. The client has to check
statusLocation URL, where the current status report is deployed, say every
n-seconds or n-minutes (depends on calculation time). Content of the response is
usually percentDone information about the progress along with statusMessage
text information, what is currently happening.

You can set process status any time in the handler using the
WPSResponse.update_status() function.

Returning large data

WPS allows for a clever method of returning a large data file: instead
of embedding the data in the response, it can be saved separately, and
a URL is returned from where the data can be downloaded. In the current
implementation, PyWPS saves the file in a folder specified
in the configuration passed by the service (or in a default location).
The URL returned is embedded in the XML response.

This behaviour can be requested either by using a GET:

...ResponseDocument=output=@asReference=true...

Or a POST request:

...
<wps:ResponseForm>
 <wps:ResponseDocument>
 <wps:Output asReference="true">
 <ows:Identifier>output</ows:Identifier>
 <ows:Title>Some Output</ows:Title>
 </wps:Output>
 </wps:ResponseDocument>
</wps:ResponseForm>
...

output is the identifier of the output the user wishes to have stored
and accessible from a URL. The user may request as many outputs by reference
as needed, but only one may be requested in RAW format.

Returning multiple files

When a process accepts a variable number of inputs, it often makes sense to
return a variable number of outputs. The WPS standard does not however readily
accommodate this. One pragmatic solution is to compress the files into a single
output archive (e.g. zip file), but this proves to be awkward when the outputs
are really just references to resources (URLs). In this case, another pragmatic
solution is to return a simple text file storing the list of references. One
issue with this is that it provides clients very little metadata about the file
content.

Although it would be fairly easy to define a json output file storing the
properties and URLs of multiple files, it would require an ad-hoc
implementation on the client side to parse the json and extract the urls
metadata. Fortunately, the metalink [http://www.metalinker.org/] standard already exists precisely to
bundle references to multiples files.

Metalink files are XML documents collecting a set of remote files. It was originally
designed to describe the location of larges files stored on multiple mirrors or
peer-to-peer networks. If one location goes down during download, metalink
clients can switch to another mirror. Also, large files can be split into
segments and downloaded concurrently from different locations, speeding up
downloads. A metalink can also describe the location of files made for different
operating systems and languages, with clients automatically selecting the most
appropriate one.

Metalink support in PyWPS includes:

	pywps.FORMATS.METALINK and pywps.FORMATS.META4

	helper classes MetaFile, MetaLink and MetaLink4

	validation of generated metalink files using XML schemas

	size (bytes) and checksums (sha-256) for each file in the metalink document

To use metalink in a process, define a ComplexOutput with a metalink
mimetype. Then after the handler has generated a list of file, instantiate
one MetaFile object for each output file, and append them to a
MetaLink or MetaLink4 instance. Finally, set the data property
of the output to the xml generated by the xml property of the MetaLink
instance.

Note

MetaLink uses metalink standard version 3.0, while MetaLink4
uses version 4.0.

Example process

from pywps import Process, LiteralInput, ComplexOutput, FORMATS
from pywps.inout.outputs import MetaLink4, MetaFile

class MultipleOutputs(Process):
 def __init__(self):
 inputs = [
 LiteralInput('count', 'Number of output files',
 abstract='The number of generated output files.',
 data_type='integer',
 default=2)]
 outputs = [
 ComplexOutput('output', 'Metalink4 output',
 abstract='A metalink file storing URIs to multiple files',
 as_reference=True,
 supported_formats=[FORMATS.META4])
]

 super(MultipleOutputs, self).__init__(
 self._handler,
 identifier='multiple-outputs',
 title='Multiple Outputs',
 abstract='Produces multiple files and returns a document'
 ' with references to these files.',
 inputs=inputs,
 outputs=outputs,
 store_supported=True,
 status_supported=True
)

 def _handler(self, request, response):
 max_outputs = request.inputs['count'][0].data

 ml = MetaLink4('test-ml-1', 'MetaLink with links to text files.', workdir=self.workdir)
 for i in range(max_outputs):
 # Create a MetaFile instance, which instantiates a ComplexOutput object.
 mf = MetaFile('output_{}'.format(i), 'Test output', format=FORMATS.TEXT)
 mf.data = 'output: {}'.format(i) # or mf.file = <path to file> or mf.url = <url>
 ml.append(mf)

 # The `xml` property of the Metalink4 class returns the metalink content.
 response.outputs['output'].data = ml.xml
 return response

Process Exceptions

Any uncatched exception in the process execution will be handled by PyWPS and reported
to the WPS client using an ows:Exception. PyWPS will only log the traceback and report
a common error message like:

Process failed, please check server error log.

This sparse error message is used to avoid security issues by providing internal
service information in an uncontrolled way.

But in some cases you want to provide a user-friendly error message to give the user a hint of
what went wrong with the processing job. In this case you can use the pywps.app.exceptions.ProcessError
exception. The error message will be send to the user encapsulated as ows:Exception.
The pywps.app.exceptions.ProcessError validates the error message to make sure it is not too long
and it does not contain any suspicious characters.

Note

By default a valid error message must have a length between 3 and 144 characters.
Only alpha-numeric characters and a few special ones are allowed.
The allowed special characters are: “.”, “:”, “!”, “?”, “=”, “,”, “-“.

Note

During the process development you might want to get a traceback shown in ows:Exception.
This is possible by running PyWPS in debug mode. In pywps.cfg config file set:

[logging]
level=DEBUG

Example process

from pywps import Process, LiteralInput
from pywps.app.Common import Metadata
from pywps.app.exceptions import ProcessError

import logging
LOGGER = logging.getLogger("PYWPS")

class ShowError(Process):
 def __init__(self):
 inputs = [
 LiteralInput('message', 'Error Message', data_type='string',
 abstract='Enter an error message that will be returned.',
 default="This process failed intentionally.",
 min_occurs=1,)]

 super(ShowError, self).__init__(
 self._handler,
 identifier='show_error',
 title='Show a WPS Error',
 abstract='This process will fail intentionally with a WPS error message.',
 metadata=[
 Metadata('User Guide', 'https://pywps.org/')],
 version='1.0',
 inputs=inputs,
 # outputs=outputs,
 store_supported=True,
 status_supported=True
)

 @staticmethod
 def _handler(request, response):
 response.update_status('PyWPS Process started.', 0)

 LOGGER.info("Raise intentionally an error ...")
 raise ProcessError(request.inputs['message'][0].data)

Process deployment

In order for clients to invoke processes, a PyWPS
Service class must be present with the ability to listen for requests.
An instance of this class must created, receiving instances of
all the desired processes classes.

In the flask example service the Service class instance is created in the
Server class. Server is a development server that relies
on Flask [http://flask.pocoo.org]. The publication of processes is encapsulated in demo.py, where
a main method passes a list of processes instances to the
Server class:

from pywps import Service
from processes.helloworld import HelloWorld
from processes.demobuffer import DemoBuffer

...
processes = [DemoBuffer(), ...]

server = Server(processes=processes)

...

Running the dev server

The The Flask service and its sample processes server is a WSGI application [http://werkzeug.pocoo.org/docs/terms/#wsgi] that accepts incoming Execute
requests and calls the appropriate process to handle them. It also
answers GetCapabilities and DescribeProcess requests based on the
process identifier and their inputs and outputs.

A host, a port, a config file and the processes can be passed as arguments to the
Server constructor.
host and port will be prioritised if passed to the constructor,
otherwise the contents of the config file (pywps.cfg) are used.

Use the run method to start the server:

...
s = Server(host='localhost', processes=processes, config_file=config_file)
s.run()
...

To make the server visible from another computer, replace localhost with 0.0.0.0.

Supporting multiple languages

Supporting multiple languages requires:

	Setting the language property in the server configuration (see [server])

	Adding translations to Process, inputs and outputs objects

The expected translations format is always the same. The first key is the RFC 4646 language code,
and the nested mapping contains translated strings accessible by a string property:

from pywps import Process, LiteralInput, LiteralOutput

class SayHello(Process):
 def __init__(self):
 inputs = [
 LiteralInput(
 'name',
 title='Input name',
 abstract='The name to say hello to.',
 translations={"fr-CA": {"abstract": "Le nom à saluer."}}
)
],
 outputs=[
 LiteralOutput(
 'response',
 title='Output response',
 abstract='The complete output message.',
 translations={"fr-CA": {
 "title": "La réponse",
 "abstract": "Le message complet."
 }}
)
],

 super().__init__(
 self._handler,
 identifier='say_hello',
 title='Process Say Hello',
 abstract='Returns a literal string output with Hello plus the inputed name',
 version='1.0',
 inputs=inputs,
 outputs=outputs,
 store_supported=True,
 status_supported=True,
 translations={"fr-CA": {
 "title": "Processus Dire Bonjour",
 "abstract": "Retourne une chaine de caractères qui dit bonjour au nom fournit en entrée."
 }},
)

 def _handler(self, request, response):
 ...

The translation will default to the untranslated attribute of the base object if
the key is not provided in the translations dictionnary.

Automated process documentation

A Process can be automatically documented with Sphinx [http://sphinx-doc.org] using the
autoprocess directive. The Process object is instantiated and its
content examined to create, behind the scenes, a docstring in the Numpy format. This
lets developers embed the documentation directly in the code instead of having to
describe each process manually. For example:

.. autoprocess:: pywps.tests.DocExampleProcess
 :docstring:
 :skiplines: 1

would yield

	
class pywps.tests.DocExampleProcess

	doc_example_process_identifier Process title (v4.0)

Multiline process abstract.

	Parameters

	
	literal_input (integer, optional, units:[meters, feet]) – Literal input value abstract.

	date_input ({'2000-01-01', '2018-01-01'}) – The title is shown when no abstract is provided.

	complex_input (application/json, application/x-netcdf) – Complex input abstract.

	bb_input ([EPSG:4326]) – BoundingBox input title (EPSG.io [http://epsg.io/])

	Returns

	
	literal_output (boolean) – Boolean output abstract.

	complex_output (text/plain) – Complex output

	bb_output ([EPSG:4326]) – BoundingBox output title

References

	PyWPS docs [https://pywps.org]

	NumPy docstring conventions [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]

Notes

This is additional documentation that can be added following the Numpy docstring convention.

The docstring option fetches the Process docstring and appends it after the
Reference section. The first lines of this docstring can be skipped using the
skiplines option.

To use the autoprocess directive, first add ‘sphinx.ext.napoleon’ and
‘pywps.ext_autodoc’ to the list of extensions in the Sphinx configuration file
conf.py. Then, insert autoprocess directives in your documentation
source files, just as you would use an autoclass directive, and build the
documentation.

Note that for input and output parameters, the title is displayed only if no abstract
is defined. In other words, if both title and abstract are given, only the abstract
will be included in the documentation to avoid redundancy.

Deployment to a production server

As already described in the Installation section, no specific deployment
procedures are for PyWPS when using flask-based server. But this formula is not
intended to be used in a production environment. For production, sudo service apache2 restartApache httpd [https://httpd.apache.org/] or nginx [https://nginx.org/] servers are
more advised. PyWPS is runs as a WSGI [https://wsgi.readthedocs.io/en/latest/] application on those servers. PyWPS
relies on the Werkzeug [http://werkzeug.pocoo.org/] library for this purpose.

Deploying an individual PyWPS instance

PyWPS should be installed in your computer (as per the Installation
section). As a following step, you can now create several instances of your WPS
server.

It is advisable for each PyWPS instance to have its own directory, where the
WSGI file along with available processes should reside. Therefore create a new
directory for the PyWPS instance:

$ sudo mkdir /path/to/pywps/

create a directory for your processes too
$ sudo mkdir /path/to/pywps/processes

Note

In this configuration example it is assumed that there is only one
instance of PyWPS on the server.

Each instance is represented by a single WSGI script (written in Python),
which:

	Loads the configuration files

	Serves processes

	Takes care about maximum number of concurrent processes and similar

Creating a PyWPS WSGI instance

An example WSGI script is distributed along with the pywps-flask service, as
described in the Installation section. The script is actually
straightforward - in fact, it’s a just wrapper around the PyWPS server with a
list of processes and configuration files passed as arguments. Here is an
example of a PyWPS WSGI script:

$ $EDITOR /path/to/pywps/pywps.wsgi

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	#!/usr/bin/env python3

from pywps.app.Service import Service

processes need to be installed in PYTHON_PATH
from processes.sleep import Sleep
from processes.ultimate_question import UltimateQuestion
from processes.centroids import Centroids
from processes.sayhello import SayHello
from processes.feature_count import FeatureCount
from processes.buffer import Buffer
from processes.area import Area

processes = [
 FeatureCount(),
 SayHello(),
 Centroids(),
 UltimateQuestion(),
 Sleep(),
 Buffer(),
 Area()
]

Service accepts two parameters:
1 - list of process instances
2 - list of configuration files
application = Service(
 processes,
 ['/path/to/pywps/pywps.cfg']
)

Note

The WSGI script is assuming that there are already some
processes at hand that can be directly included. Also it assumes, that
the configuration file already exists - which is not the case yet.

The Configuration is described in next chapter (Configuration),
as well as process creation and deployment (Processes).

Deployment on Apache2 httpd server

First, the WSGI module must be installed and enabled:

$ sudo apt-get install libapache2-mod-wsgi
$ sudo a2enmod wsgi

You then can edit your site configuration file
(/etc/apache2/sites-enabled/yoursite.conf) and add the following:

PyWPS
WSGIDaemonProcess pywps home=/path/to/pywps user=www-data group=www-data processes=2 threads=5
WSGIScriptAlias /pywps /path/to/pywps/pywps.wsgi process-group=pywps

<Directory /path/to/pywps/>
 WSGIScriptReloading On
 WSGIProcessGroup pywps
 WSGIApplicationGroup %{GLOBAL}
 Require all granted
</Directory>

Note

WSGIScriptAlias points to the pywps.wsgi script created
before - it will be available under the url http://localhost/pywps

Note

Please make sure that the logs, workdir, and outputpath directories are writeable to the Apache user.
The outputpath directory need also be accessible from the URL mentioned in outputurl configuration.

And of course restart the server:

$ sudo service apache2 restart

Deployment on Nginx-Gunicorn

Note

We will use Greenunicorn for pyWPS deployment, since it is a very simple to configurate server.

For difference between WSGI server consult: WSGI comparison [https://www.digitalocean.com/community/tutorials/a-comparison-of-web-servers-for-python-based-web-applications].

uWSGU is more popular than gunicorn, best documentation is probably to be found at Readthedocs [https://uwsgi-docs.readthedocs.io/en/latest/WSGIquickstart.html].

We need nginx and gunicorn server:

$ apt install nginx-full
$ apt install gunicorn3

It is assumed that PyWPS is installed in your system (if not see: ref:installation) and we will use pywps-flask as installation example.

First, cloning the pywps-flask example to the root / (you need to be sudoer or root to run the examples):

$ cd /
$ git clone https://github.com/geopython/pywps-flask.git

Second, preparing the WSGI script for gunicorn. It is necessary that the
WSGI script located in the pywps-flask service is identified as a python module by gunicorn,
this is done by creating a link with .py extention to the wsgi file:

$ cd /pywps-flask/wsgi
$ ln -s ./pywps.wsgi ./pywps_app.py

Gunicorn can already be tested by setting python path on the command options:

$ gunicorn3 -b 127.0.0.1:8081 --workers $((2*`nproc --all`)) --log-syslog --pythonpath /pywps-flask wsgi.pywps_app:application

The command will start a gunicorn instance on the localhost IP and port 8081, logging to systlog
(/var/log/syslog), using pywps process folder /pywps-flask/processes and loading module wsgi.pywps_app and object/function application for WSGI.

Note

Gunicorn uses a prefork model where the master process forks processes (workers)
that willl accept incomming connections. The –workers flag sets the number of processes,
the default values is 1 but the recomended value is 2 or 4 times the number of CPU cores.

Next step is to configure NGINX, by pointing to the WSGI server by changing the location paths of the default
site file but editing file /etc/nginx/sites-enabled as follows::

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;

 #better to redirect / to wps application
 location / {
 return 301 /wps;
 }

 location /wps {
 # with try_files active there will be problems
 #try_files $uri $uri/ =404;

 proxy_set_header Host $host;
 proxy_redirect off;
 proxy_set_header X-NginX-Proxy true;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_pass http://127.0.0.1:8081;
 }

}

It is likely that part of the proxy configuration is already set on the file /etc/nginx/proxy.conf.
Of course the necessatyrestart of nginx

$ service nginx restart

The service will now be available on the IP of the server or localhost

http://localhost/wps?request=GetCapabilities&service=wps

The current gunicorn instance was launched by the user. In a production server it is necessary to set gunicorn as a service

On ubuntu 16.04 the systemcltd system requires a service file that will start the gunicorn3 service. The service file (/lib/systemd/system/gunicorn.service)
has to be configure as follows:

[Unit]
Description=gunicorn3 daemon
After=network.target

[Service]
User=www-data
Group=www-data
PIDFile=/var/run/gunicorn3.pid
Environment=WORKERS=3
ExecStart=/usr/bin/gunicorn3 -b 127.0.0.1:8081 --preload --workers $WORKERS --log-syslog --pythonpath /pywps-flask wsgi.pywps_app:application
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s TERM $MAINPID

[Install]
WantedBy=multi-user.target

And then enable the service and then reload the systemctl daemon:

$ systemctl enable gunicorn3.service
$ systemctl daemon-reload
$ systemctl restart gunicorn3.service

And to check that everything is ok:

$ systemctl status gunicorn3.service

Note

Todo NGIX + uWSGI

Testing the deployment of a PyWPS instance

Note

For the purpose of this documentation, it is assumed that you’ve
installed PyWPS using the localhost server domain name.

As stated, before, PyWPS should be available at http://localhost/pywps, we now
can visit the url (or use wget):

the --content-error parameter makes sure, error response is displayed
$ wget --content-error -O - "http://localhost/pywps"

The result should be an XML-encoded error message.

<?xml version="1.0" encoding="UTF-8"?>
<ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/ows/1.1 http://schemas.opengis.net/ows/1.1.0/owsExceptionReport.xsd" version="1.0.0">
 <ows:Exception exceptionCode="MissingParameterValue" locator="service">
 <ows:ExceptionText>service</ows:ExceptionText>
 </ows:Exception>
</ows:ExceptionReport>

The server responded with the pywps.exceptions.MissingParameterValue
exception, telling us that the parameter service was not set. This is
compliant with the OGC WPS standard, since each request mast have at least the
service and request parameters. We can say for now, that this PyWPS
instance is properly deployed on the server, since it returns proper exception
report.

We now have to configure the instance by editing the pywps.cfg file and adding
some processes.

Migrating from PyWPS 3.x to 4.x

The basic concept of PyWPS 3.x and 4.x remains the same: You deploy PyWPS once
and can have many instances with set of processes. It’s good practice to store
processes in single files, although it’s not required.

Note

Unluckily, there is not automatic tool for conversion of processes nor
compatibility module. If you would like to sponsor development of such
module, please contact Project Steering Committee via PyWPS mailing list
or members of PSC directly.

Configuration file

Configuration file format remains the same (it’s the one used by configparser [https://docs.python.org/3.6/library/configparser.html] module). The sections are shift a bit, so they
are more alike another GeoPython project - pycsw [https://pycsw.org].

See section Configuration.

Single process definition

The main principle remains the same between 3.x and 4.x branches: You have to
define process class class and it’s __init__ method with inputs and outputs.

The former execute() method can now be any function and is assigned as
handler attribute.

handler function get’s two arguments: request and response. In requests,
all input data are stored, response will have output data assinged.

The main difference between 3.x and 4.x is, every input is list of inputs. The
reason for such behaviour is, that you, as user of PyWPS define input defined by
type and identifier. When PyWPS process is turned to running job, there can be
usually more then one input with same identifier defined. Therefore instead of
calling:

def execute(self):

 ...

 # 3.x inputs
 input = self.my_input.getValue()

you shall use first index of an input list:

def handler(request, response):

 ...

 # 4.X inputs
 input = request.inputs['my_input'][0].file

Inputs and outputs data manipulation

Btw, PyWPS Inputs do now have file, data, url and stream attributes. They are
transparently converting one data-representation-type to another. You can read
input data from file-like object using stream or get directly the data into
variable with input.data. You can also save output data directly using
output.data = { ….. }.

See more in Processes

Deployment

While PyWPS 3.x was usually deployed as CGI application, PyWPS 4.x is configured
as WSGI application. PyWPS 4.x is distributed without any processes or sample
deploy script. We provide such example in our pywps-flask [https://github.com/geopython/pywps-flask] project.

Note

PYWPS_PROCESSES environment variable is gone, you have to assing
processes to deploy script manually (or semi-automatically).

For deployment script, standard WSGI application as used by flask
microframework [http://flask.pocoo.org/] has to be defined, which get’s
two parameters: list of processes and configuration files:

from pywps.app.Service import Service
from processes.buffer import Buffer

processes = [Buffer()]

application = Service(processes, ['wps.cfg'])

Those 4 lines of code do deploy PyWPS with Buffer process. This gives you more
flexible way, how to define processes, since you can pass new variables and
config values to each process class instance during it’s definition.

Sample processes

For sample processes, please refer to pywps-flask [https://github.com/geopython/pywps-flask] project on GITHub.

Needed steps summarization

	Fix configuration file

	Every processes needs new class and inputs and outputs definition

	In execute method, you just need to review inputs and outputs data
assignment, but the core of the method should remain the same.

	Replace shell or python-based CGI script with Flask-based WSGI script

PyWPS and external tools

GRASS GIS

PyWPS can handle all the management needed to setup temporal GRASS GIS
environemtn (GRASS DBASE, Location and Mapset) for you. You just need to
configure it in the pywps.Process, using the parameter
grass_location, which can have 2 possible values:

	epsg:[EPSG_CODE]

	New temporal location is created using the EPSG code given. PyWPS will
create temporal directory as GRASS Location and remove it after the WPS
Execute response is constructed.

	/path/to/grassdbase/location/

	Existing absolute path to GRASS Location directory. PyWPS will create
temporal GRASS Mapset direcetory and remove it after the WPS Exceute
response is constructed.

Then you can use Python - GRASS interfaces in the execute method, to make the
work.

Note

Even PyWPS supports GRASS integration, the data still need to be
imported using GRASS modules v.in.* or r.in.* and also they have
to be exported manually at the end.

def execute(request, response):
 from grass.script import core as grass
 grass.run_command('v.in.ogr', input=request.inputs["input"][0].file,
 ...)
 ...
 grass.run_command('v.out.ogr', input="myvector", ...)

Also do not forget to set gisbase Configuration option.

OpenLayers WPS client

ZOO-Project

ZOO-Project [http://www.zoo-project.org] provides both a server (C) and
client (JavaScript) framework.

QGIS WPS Client

The QGIS WPS [https://plugins.qgis.org/plugins/wps/] client provides a
plugin with WPS support for the QGIS Desktop GIS.

Extensions

PyWPS has extensions to enhance its usability in special uses cases, for example
to run Web Processing Services at High Performance Compute (HPC) centers. These
extensions are disabled by default. They need a modified configuration and have
additional software packages. The extensions are:

	Using batch job schedulers (distributed resource management) at HPC compute
centers.

	Using container solutions like Docker [https://www.docker.com/] in a cloud
computing infrastructure.

Job Scheduler Extension

By default PyWPS executes all processes on the same machine as the PyWPS service
is running on. Using the PyWPS scheduler extension it becomes possible to
delegate the execution of asynchronous processes to a scheduler system like
Slurm [https://slurm.schedmd.com/],
Grid Engine [https://en.wikipedia.org/wiki/Univa_Grid_Engine] and
TORQUE [https://en.wikipedia.org/wiki/TORQUE]. By enabling this extension one
can handle the processing workload using an existing scheduler system commonly
found at High Performance Compute (HPC) centers.

Note

The PyWPS process implementations are not changed by using the
scheduler extension.

To activate this extension you need to edit the pywps.cfg configuration file
and make the following changes:

[processing]
mode = scheduler

The scheduler extension uses the DRMAA [https://pypi.python.org/pypi/drmaa]
library to talk to the different scheduler systems. Install the additional
Python dependencies using pip:

$ pip install -r requirements-processing.txt # drmaa

If you are using the conda [https://conda.io/docs/] package manager you can
install the dependencies with:

$ conda install drmaa dill

The package dill [https://pypi.python.org/pypi/dill] is an enhanced version
of the Python pickle module for serializing and de-serializing Python objects.

Warning

In addition you need to install and configure the drmaa modules for
your scheduler system on the machine PyWPS is running on. Follow the
instructions given in the DRMAA [https://pypi.python.org/pypi/drmaa] documentation and by your scheduler system
installation guide.

Note

See an example on how to use this extension with a
Slurm batch system in a
docker demo [https://github.com/bird-house/birdhouse-docker-images/tree/master/pywps-scheduler-demo].

Note

COWS WPS [http://cows.ceda.ac.uk/cows_wps/install.html#installing-the-sun-grid-engine-scheduler]
has a scheduler extension for Sun Grid Engine (SGE).

Interactions of PyWPS with a scheduler system

The PyWPS scheduler extension uses the Python dill [https://pypi.python.org/pypi/dill] library to dump
and load the processing job to/from filesystem. The batch script executed
on the scheduler system calls the PyWPS joblauncher script with the dumped
job status and executes the job (no WPS service running on scheduler).
The job status is updated on the filesystem. Both the PyWPS service and
the joblauncher script use the same PyWPS configuration. The scheduler
assumes that the PyWPS server has a shared filesystem with the scheduler system
so that XML status documents and WPS outputs can be found at the same file
location. See the interaction diagram how the communication between PyWPS and
the scheduler works.

[image: _images/pywps-scheduler-extension_interactions.png]
Interaction diagram for PyWPS scheduler extension.

The following image shows an example of using the scheduler extension with
Slurm.

[image: _images/pywps-slurm-demo-architecture.png]
Example of PyWPS scheduler extension usage with Slurm.

Docker Container Extension

Todo

This extension is on our wish list. In can be used to encapsulate
and control the execution of a process. It enhances also the use case of
Web Processing Services in a cloud computing infrastructure.

PyWPS API Doc

Process

	
class pywps.Process(handler, identifier, title, abstract='', keywords=[], profile=[], metadata=[], inputs=[], outputs=[], version='None', store_supported=False, status_supported=False, grass_location=None, translations=None)

	
	Parameters

	
	handler – A callable that gets invoked for each incoming
request. It should accept a single
pywps.app.WPSRequest argument and return a
pywps.app.WPSResponse object.

	identifier (string) – Name of this process.

	title (string) – Human readable title of process.

	abstract (string) – Brief narrative description of the process.

	keywords (list) – Keywords that characterize a process.

	inputs – List of inputs accepted by this process. They
should be LiteralInput and ComplexInput
and BoundingBoxInput
objects.

	outputs – List of outputs returned by this process. They
should be LiteralOutput and ComplexOutput
and BoundingBoxOutput
objects.

	metadata – List of metadata advertised by this process. They
should be pywps.app.Common.Metadata objects.

	translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 language code,
and the nested mapping contains translated strings accessible by a string property.
e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

Exceptions you can raise in the process implementation to show a user-friendly error message.

	
class pywps.app.exceptions.ProcessError(msg=None)

	pywps.app.exceptions.ProcessError is an Exception
you can intentionally raise in a process
to provide a user-friendly error message.
The error message gets validated (3<= message length <=144) and only
alpha numeric characters and a few special characters are allowed.
The special characters are: ., :, !, ?, =, ,, -.

Inputs and outputs

	
class pywps.validator.mode.MODE

	Validation mode enumeration

	
NONE = 0

	

	
SIMPLE = 1

	

	
STRICT = 2

	

	
VERYSTRICT = 3

	

Most of the inputs nad outputs are derived from the IOHandler class

	
class pywps.inout.basic.IOHandler(workdir=None, mode=0)

	Base IO handling class subclassed by specialized versions: FileHandler, UrlHandler, DataHandler, etc.

If the specialized handling class is not known when the object is created, instantiate the object with IOHandler.
The first time the file, url or data attribute is set, the associated subclass will be automatically
registered. Once set, the specialized subclass cannot be switched.

	Parameters

	
	workdir – working directory, to save temporal file objects in.

	mode – MODE validation mode.

	filestr

	Filename on the local disk.

	urlstr

	Link to an online resource.

	streamFileIO

	A readable object.

	dataobject

	A native python object (integer, string, float, etc)

	base64str

	A base 64 encoding of the data.

>>> # setting up
>>> import os
>>> from io import RawIOBase
>>> from io import FileIO
>>>
>>> ioh_file = IOHandler(workdir=tmp)
>>> assert isinstance(ioh_file, IOHandler)
>>>
>>> # Create test file input
>>> fileobj = open(os.path.join(tmp, 'myfile.txt'), 'w')
>>> fileobj.write('ASDF ASFADSF ASF ASF ASDF ASFASF')
>>> fileobj.close()
>>>
>>> # testing file object on input
>>> ioh_file.file = fileobj.name
>>> assert isinstance(ioh_file, FileHandler
>>> assert ioh_file.file == fileobj.name
>>> assert isinstance(ioh_file.stream, RawIOBase)
>>> # skipped assert isinstance(ioh_file.memory_object, POSH)
>>>
>>> # testing stream object on input
>>> ioh_stream = IOHandler(workdir=tmp)
>>> assert ioh_stream.workdir == tmp
>>> ioh_stream.stream = FileIO(fileobj.name,'r')
>>> assert isinstance(ioh_stream, StreamHandler)
>>> assert open(ioh_stream.file).read() == ioh_file.stream.read()
>>> assert isinstance(ioh_stream.stream, RawIOBase)

LiteralData

	
class pywps.LiteralInput(identifier, title=None, data_type=None, workdir=None, abstract='', keywords=[], metadata=[], uoms=None, min_occurs=1, max_occurs=1, mode=1, allowed_values=None, default=None, default_type=3, translations=None)

	
	Parameters

	
	identifier (str) – The name of this input.

	title (str) – Title of the input

	data_type (pywps.inout.literaltypes.LITERAL_DATA_TYPES) – data type

	workdir (str) – working directory, to save temporary file objects in.

	abstract (str) – Input abstract

	keywords (list) – Keywords that characterize this input.

	metadata (list) – TODO

	uoms (str) – units

	min_occurs (int) – minimum occurence

	max_occurs (int) – maximum occurence

	mode (pywps.validator.mode.MODE) – validation mode (none to strict)

	allowed_values (pywps.inout.literaltypes.AnyValue) – or pywps.inout.literaltypes.AllowedValue object

	metadata – List of metadata advertised by this process. They
should be pywps.app.Common.Metadata objects.

	translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 language code,
and the nested mapping contains translated strings accessible by a string property.
e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

	
class pywps.LiteralOutput(identifier, title, data_type='string', abstract='', keywords=[], metadata=[], uoms=None, mode=1, translations=None)

	
	Parameters

	
	identifier – The name of this output.

	title (str) – Title of the input

	data_type (pywps.inout.literaltypes.LITERAL_DATA_TYPES) – data type

	abstract (str) – Input abstract

	uoms (str) – units

	mode (pywps.validator.mode.MODE) – validation mode (none to strict)

	metadata – List of metadata advertised by this process. They
should be pywps.app.Common.Metadata objects.

	translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 language code,
and the nested mapping contains translated strings accessible by a string property.
e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

	
class pywps.inout.literaltypes.AnyValue

	Specifies that any value is allowed for this quantity.

	
class pywps.inout.literaltypes.AllowedValue(allowed_type=None, value=None, minval=None, maxval=None, spacing=None, range_closure='closed')

	List of all valid values and/or ranges of values for this quantity.
The values are evaluated in literal validator functions

	Parameters

	
	allowed_type (pywps.validator.allowed_value.ALLOWEDVALUETYPE) – VALUE or RANGE

	value – single value

	minval – minimal value in case of Range

	maxval – maximal value in case of Range

	spacing – spacing in case of Range

	range_closure (pywps.input.literaltypes.RANGECLOSURETYPE) –

	
class pywps.inout.literaltypes.ValuesReference(reference=None, values_form=None)

	Reference to list of all valid values and/or ranges of values for this quantity.
NOTE: Validation of values is not implemented.

	Param

	reference: URL from which this set of ranges and values can be retrieved

	Param

	values_form: Reference to a description of the mimetype, encoding,
and schema used for this set of values and ranges.

	
pywps.inout.literaltypes.LITERAL_DATA_TYPES = ('float', 'boolean', 'integer', 'string', 'positiveInteger', 'anyURI', 'time', 'date', 'dateTime', 'scale', 'angle', 'nonNegativeInteger')

	Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple.
If iterable is specified the tuple is initialized from iterable’s items.

If the argument is a tuple, the return value is the same object.

ComplexData

	
class pywps.ComplexInput(identifier, title, supported_formats, data_format=None, abstract='', keywords=[], workdir=None, metadata=[], min_occurs=1, max_occurs=1, mode=0, default=None, default_type=3, translations=None)

	Complex data input

	Parameters

	
	identifier (str) – The name of this input.

	title (str) – Title of the input

	supported_formats (pywps.inout.formats.Format) – List of supported
formats

	data_format (pywps.inout.formats.Format) – default data format

	abstract (str) – Input abstract

	keywords (list) – Keywords that characterize this input.

	workdir (str) – working directory, to save temporary file objects in.

	metadata (list) – TODO

	min_occurs (int) – minimum occurrence

	max_occurs (int) – maximum occurrence

	mode (pywps.validator.mode.MODE) – validation mode (none to strict)

	translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 language code,
and the nested mapping contains translated strings accessible by a string property.
e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

	
class pywps.ComplexOutput(identifier, title, supported_formats=None, data_format=None, abstract='', keywords=[], workdir=None, metadata=None, as_reference=False, mode=0, translations=None)

	
	Parameters

	
	identifier – The name of this output.

	title – Readable form of the output name.

	supported_formats ((pywps.inout.formats.Format,)) – List of supported
formats. The first format in the list will be used as the default.

	abstract (str) – Description of the output

	mode (pywps.validator.mode.MODE) – validation mode (none to strict)

	metadata – List of metadata advertised by this process. They
should be pywps.app.Common.Metadata objects.

	translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 language code,
and the nested mapping contains translated strings accessible by a string property.
e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

	
class pywps.Format(mime_type, schema=None, encoding=None, validate=None, extension=None)

	Input/output format specification

Predefined Formats are stored in pywps.inout.formats.FORMATS

	Parameters

	
	mime_type (str) – mimetype definition

	schema (str) – xml schema definition

	encoding (str) – base64 or not

	validate (function) – function, which will perform validation. e.g.

	mode (number) – validation mode

	extension (str) – file extension

	
pywps.inout.formats.FORMATS

	FORMATS(GEOJSON, JSON, SHP, GML, METALINK, META4, KML, KMZ, GEOTIFF, WCS, WCS100, WCS110, WCS20, WFS, WFS100, WFS110, WFS20, WMS, WMS130, WMS110, WMS100, TEXT, DODS, NETCDF, LAZ, LAS, ZIP, XML)
List of out of the box supported formats. User can add custom formats to the
array.

	
pywps.validator.complexvalidator.validategml(data_input, mode)

	GML validation function

	Parameters

	
	data_input – ComplexInput

	mode (pywps.validator.mode.MODE) –

This function validates GML input based on given validation mode. Following
happens, if mode parameter is given:

	MODE.NONE

	it will return always True

	MODE.SIMPLE

	the mimetype will be checked

	MODE.STRICT

	GDAL/OGR [http://gdal.org/] is used for getting the proper format.

	MODE.VERYSTRICT

	the lxml.etree is used along with given input schema and the
GML file is properly validated against given schema.

BoundingBoxData

	
class pywps.BoundingBoxInput(identifier, title, crss=None, abstract='', keywords=[], dimensions=2, workdir=None, metadata=[], min_occurs=1, max_occurs=1, mode=0, default=None, default_type=3, translations=None)

	
	Parameters

	
	identifier (string) – The name of this input.

	title (string) – Human readable title

	abstract (string) – Longer text description

	crss – List of supported coordinate reference
system (e.g. [‘EPSG:4326’])

	keywords (list) – Keywords that characterize this input.

	dimensions (int) – 2 or 3

	workdir (str) – working directory, to save temporary file objects in.

	metadata (list) – TODO

	min_occurs (int) – how many times this input occurs

	max_occurs (int) – how many times this input occurs

	metadata – List of metadata advertised by this process. They
should be pywps.app.Common.Metadata objects.

	translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 language code,
and the nested mapping contains translated strings accessible by a string property.
e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

	
class pywps.BoundingBoxOutput(identifier, title, crss, abstract='', keywords=[], dimensions=2, metadata=[], min_occurs='1', max_occurs='1', as_reference=False, mode=0, translations=None)

	
	Parameters

	
	identifier – The name of this input.

	title (str) – Title of the input

	abstract (str) – Input abstract

	crss – List of supported coordinate reference system (e.g. [‘EPSG:4326’])

	dimensions (int) – number of dimensions (2 or 3)

	min_occurs (int) – minimum occurence

	max_occurs (int) – maximum occurence

	mode (pywps.validator.mode.MODE) – validation mode (none to strict)

	metadata – List of metadata advertised by this process. They
should be pywps.app.Common.Metadata objects.

	translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 language code,
and the nested mapping contains translated strings accessible by a string property.
e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

Request and response objects

	
pywps.response.status.WPS_STATUS

	WPSStatus(UNKNOWN, ACCEPTED, STARTED, PAUSED, SUCCEEDED, FAILED)
Process status information

	
class pywps.app.WPSRequest(http_request=None)

	
	
operation

	Type of operation requested by the client. Can be
getcapabilities, describeprocess or execute.

	
http_request

	Original Werkzeug HTTPRequest object.

	
inputs

	A MultiDict object containing input values sent by the client.

	
check_accepted_versions(acceptedversions)

	
	Parameters

	acceptedversions – string

	
check_and_set_language(language)

	set this.language

	
check_and_set_version(version)

	set this.version

	
json

	Return JSON encoded representation of the request

	
class pywps.response.WPSResponse(wps_request, uuid=None, version='1.0.0')

	
	
status

	Information about currently running process status
pywps.response.status.STATUS

Processing

	
pywps.processing.Process(process, wps_request, wps_response)

	Factory method (looking like a class) to return the
configured processing class.

	Returns

	instance of pywps.processing.Processing

	
class pywps.processing.Processing(process, wps_request, wps_response)

	Processing is an interface for running jobs.

	
class pywps.processing.Job(process, wps_request, wps_response)

	Job represents a processing job.

	
classmethod from_json(value)

	init this request from json back again

	Parameters

	value – the json (not string) representation

	
json

	Return JSON encoded representation of the request

Refer Exceptions for their description.

Contributing to PyWPS

The PyWPS project openly welcomes contributions (bug reports, bug fixes, code
enhancements/features, etc.). This document will outline some guidelines on
contributing to PyWPS. As well, the PyWPS community [https://pywps.org/community] is a
great place to get an idea of how to connect and participate in the PyWPS community
and development.

PyWPS has the following modes of contribution:

	GitHub Commit Access

	GitHub Pull Requests

Code of Conduct

Contributors to this project are expected to act respectfully towards others in
accordance with the OSGeo Code of Conduct [https://www.osgeo.org/code_of_conduct].

Contributions and Licensing

Contributors are asked to confirm that they comply with the project license [https://github.com/geopython/PyWPS/blob/master/LICENSE.txt] guidelines.

GitHub Commit Access

	proposals to provide developers with GitHub commit access shall be emailed to
the pywps-devel mailing list [https://pywps.org/community]. Proposals shall be approved by the PyWPS
development team. Committers shall be added by the project admin

	removal of commit access shall be handled in the same manner

	each committer must send an email to the PyWPS mailing list agreeing to the license guidelines (see
Contributions and Licensing Agreement Template). This is only required once

	each committer shall be listed in https://github.com/geopython/pywps/blob/master/COMMITTERS.txt

GitHub Pull Requests

	pull requests can provide agreement to license guidelines as text in the pull
request or via email to the PyWPS mailing list [https://pywps.org/community] (see Contributions and
Licensing Agreement Template). This is only required
for a contributor’s first pull request. Subsequent pull requests do not
require this step

	pull requests may include copyright in the source code header by the
contributor if the contribution is significant or the contributor wants to
claim copyright on their contribution

	all contributors shall be listed at
https://github.com/geopython/pywps/graphs/contributors

	unclaimed copyright, by default, is assigned to the main copyright holders as
specified in https://github.com/geopython/pywps/blob/master/LICENSE.txt

	make sure, the tests are passing on [travis-ci](https://travis-ci.org/geopython/pywps) sevice, as well as on your local machine tox:

tox

Contributions and Licensing Agreement Template

Hi all, I'd like to contribute <feature X|bugfix Y|docs|something else> to
PyWPS. I confirm that my contributions to PyWPS will be compatible with the
PyWPS license guidelines at the time of contribution.

GitHub

Code, tests, documentation, wiki and issue tracking are all managed on GitHub.
Make sure you have a GitHub account [https://github.com/signup/free].

Code Overview

	the PyWPS wiki [https://github.com/geopython/pywps/wiki/Code-Architecture]
documents an overview of the codebase [TODO]

Documentation

	documentation is managed in docs/, in reStructuredText format

	Sphinx [http://sphinx-doc.org/] is used to generate the documentation

	See the reStructuredText Primer [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html] on rST
markup and syntax

Bugs

The PyWPS issue tracker [https://github.com/geopython/pywps/issues] is the
place to report bugs or request enhancements. To submit a bug be sure to specify
the PyWPS version you are using, the appropriate component, a description of how
to reproduce the bug, as well as the Python version and the platform.

Forking PyWPS

Contributions are most easily managed via GitHub pull requests. Fork [https://github.com/geopython/pywps/fork] PyWPS into your own GitHub
repository to be able to commit your work and submit pull requests.

Development

GitHub Commit Guidelines

	enhancements and bug fixes should be identified with a GitHub issue

	commits should be granular enough for other developers to understand the
nature / implications of the change(s)

	for trivial commits that do not need Travis CI [https://travis-ci.org/geopython/pywps] to run, include [ci skip] as
part of the commit message

	non-trivial Git commits shall be associated with a GitHub issue. As
documentation can always be improved, tickets need not be opened for improving
the docs

	Git commits shall include a description of changes

	Git commits shall include the GitHub issue number (i.e. #1234) in the Git
commit log message

	all enhancements or bug fixes must successfully pass all
OGC CITE [https://cite.opengeospatial.org] tests before they are committed

	all enhancements or bug fixes must successfully pass all tests
before they are committed

	enhancements which can be demonstrated from the PyWPS tests should be
accompanied by example WPS request XML or KVP

Coding Guidelines

	PyWPS instead of pywps, pyWPS, Pywps, PYWPS

	always code with PEP 8 [https://www.python.org/dev/peps/pep-0008/] conventions

	always run source code through flake8

	for exceptions which make their way to OGC ows:ExceptionReport XML, always
specify the appropriate locator and code parameters

Submitting a Pull Request

This section will guide you through steps of working on PyWPS. This section
assumes you have forked PyWPS into your own GitHub repository. Note that
master is the main development branch in PyWPS.
for stable releases and managed exclusively by the PyWPS team.

setup a virtualenv
virtualenv mypywps && cd mypywps
. ./bin/activate

clone the repository locally
git clone git@github.com:USERNAME/pywps.git
cd pywps
pip install -e . && pip install -r requirements.txt

add the main PyWPS development branch to keep up to date with upstream changes
git remote add upstream https://github.com/geopython/pywps.git
git pull upstream master

create a local branch off master
The name of the branch should include the issue number if it exists
git branch issue-72
git checkout issue-72

make code/doc changes
git commit -am 'fix xyz (#72)'
git push origin issue-72

Your changes are now visible on your PyWPS repository on GitHub. You are now
ready to create a pull request. A member of the PyWPS team will review the pull
request and provide feedback / suggestions if required. If changes are
required, make them against the same branch and push as per above (all changes
to the branch in the pull request apply).

The pull request will then be merged by the PyWPS team. You can then delete
your local branch (on GitHub), and then update
your own repository to ensure your PyWPS repository is up to date with PyWPS
master:

git checkout master
git pull upstream master

Release Packaging

Release packaging notes are maintained at https://github.com/geopython/pywps/wiki/ReleasePackaging

Exceptions

PyWPS will throw exceptions based on the error occurred.
The exceptions will point out what is missing or what went wrong
as accurately as possible.

Here is the list of Exceptions and HTTP error codes associated with them:

	
class pywps.exceptions.NoApplicableCode(description, locator='', code=400)

	No applicable code exception implementation

also

Base exception class

	
class pywps.exceptions.InvalidParameterValue(description, locator='', code=400)

	Invalid parameter value exception implementation

	
class pywps.exceptions.MissingParameterValue(description, locator='', code=400)

	Missing parameter value exception implementation

	
class pywps.exceptions.FileSizeExceeded(description, locator='', code=400)

	File size exceeded exception implementation

	
class pywps.exceptions.VersionNegotiationFailed(description, locator='', code=400)

	Version negotiation exception implementation

	
class pywps.exceptions.OperationNotSupported(description, locator='', code=400)

	Operation not supported exception implementation

	
class pywps.exceptions.StorageNotSupported(description, locator='', code=400)

	Storage not supported exception implementation

	
class pywps.exceptions.NotEnoughStorage(description, locator='', code=400)

	Storage not supported exception implementation

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pywps	

 	
 	
 pywps.exceptions	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | S
 | V
 | W

A

 	
 	AllowedValue (class in pywps.inout.literaltypes)

 	
 	AnyValue (class in pywps.inout.literaltypes)

B

 	
 	BoundingBoxInput (class in pywps)

 	
 	BoundingBoxOutput (class in pywps)

C

 	
 	check_accepted_versions() (pywps.app.WPSRequest method)

 	check_and_set_language() (pywps.app.WPSRequest method)

 	
 	check_and_set_version() (pywps.app.WPSRequest method)

 	ComplexInput (class in pywps)

 	ComplexOutput (class in pywps)

D

 	
 	DocExampleProcess (class in pywps.tests)

E

 	
 	
 environment variable

 	PYTHONPATH

F

 	
 	FileSizeExceeded (class in pywps.exceptions)

 	Format (class in pywps)

 	
 	FORMATS (in module pywps.inout.formats)

 	from_json() (pywps.processing.Job class method)

H

 	
 	http_request (pywps.app.WPSRequest attribute)

I

 	
 	inputs (pywps.app.WPSRequest attribute)

 	
 	InvalidParameterValue (class in pywps.exceptions)

 	IOHandler (class in pywps.inout.basic)

J

 	
 	Job (class in pywps.processing)

 	
 	json (pywps.app.WPSRequest attribute)

 	(pywps.processing.Job attribute)

L

 	
 	LITERAL_DATA_TYPES (in module pywps.inout.literaltypes)

 	
 	LiteralInput (class in pywps)

 	LiteralOutput (class in pywps)

M

 	
 	MissingParameterValue (class in pywps.exceptions)

 	
 	MODE (class in pywps.validator.mode)

N

 	
 	NoApplicableCode (class in pywps.exceptions)

 	
 	NONE (pywps.validator.mode.MODE attribute)

 	NotEnoughStorage (class in pywps.exceptions)

O

 	
 	operation (pywps.app.WPSRequest attribute)

 	
 	OperationNotSupported (class in pywps.exceptions)

P

 	
 	Process (class in pywps)

 	Process() (in module pywps.processing)

 	ProcessError (class in pywps.app.exceptions)

 	
 	Processing (class in pywps.processing)

 	PYTHONPATH

 	pywps (module)

 	pywps.exceptions (module)

S

 	
 	SIMPLE (pywps.validator.mode.MODE attribute)

 	status (pywps.response.WPSResponse attribute)

 	
 	StorageNotSupported (class in pywps.exceptions)

 	STRICT (pywps.validator.mode.MODE attribute)

V

 	
 	validategml() (in module pywps.validator.complexvalidator)

 	ValuesReference (class in pywps.inout.literaltypes)

 	
 	VersionNegotiationFailed (class in pywps.exceptions)

 	VERYSTRICT (pywps.validator.mode.MODE attribute)

W

 	
 	WPS_STATUS (in module pywps.response.status)

 	
 	WPSRequest (class in pywps.app)

 	WPSResponse (class in pywps.response)

Storage

Todo

	Local file storage

In PyWPS, storage covers the storage of both the results that we want to return to the user and the storage of the execution status of each process.

AWS S3

Amazon Web Services Simple Storage Service (AWS S3) can be used to store both process execution status XML documents and process result files. By using S3 we can allow easy public read access to process status and results on S3 using a variety of tools including the web browser, the AWS SDK and the AWS CLI.

For more information about AWS S3 please see https://aws.amazon.com/s3/ and for information about working with an S3 bucket see https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

Requirements

In order to work with S3 storage, you must first create an S3 bucket. https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#create-bucket-intro

PyWPS uses the boto3 library to send requests to AWS. In order to make requests boto3 requires credentials which grant read and write access to the S3 bucket. Please see the boto3 guide on credentials for options on how to configure the credentials for your application. https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html

An example of an IAM policy that will allow PyWPS to read and write to the S3 Bucket is described here: https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_s3_rw-bucket.html

	``{

	“Version”: “2012-10-17”,
“Statement”: [

	{

	“Sid”: “ListObjectsInBucket”,
“Effect”: “Allow”,
“Action”: [“s3:ListBucket”],
“Resource”: [“arn:aws:s3:::bucket-name”]

},
{

“Sid”: “AllObjectActions”,
“Effect”: “Allow”,
“Action”: “s3:Object”,
“Resource”: [“arn:aws:s3:::bucket-name/”]

}

]

}``

 _static/pywps.png

_static/up-pressed.png

_static/up.png

_images/pywps-scheduler-extension_interactions.png
‘Scheduler Host

PYWPS Host

Cllent Host

PyWPS
JobLauncher

‘Scheduler
Slurm etc

DRMAA
Client

PyWPS
Processing

HTTP
Server

PS

Pyw

Client

_images/pywps-slurm-demo-architecture.png
Execute
— wps
Process.

localhost5000wps.

JU— —
update status ST ‘write outputs.
Sun
Wokar a1
o R -
e
D X T —— JQum
SRiA
o, =
Wotkar a2
. St
o ps . | posges < o ps
frys B ey

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to the PyWPS 4.2.4 documentation!

 		
 OGC Web Processing Service (OGC WPS)

 		
 Process

 		
 Data inputs and outputs

 		
 LiteralData

 		
 ComplexData

 		
 BoundingBoxData

 		
 Passing data to process instance

 		
 Synchronous versus asynchronous process request

 		
 Process status

 		
 Request encoding, HTTP GET and POST

 		
 PyWPS

 		
 PyWPS philosophy

 		
 Why is PyWPS there

 		
 PyWPS History

 		
 Installation

 		
 Dependencies and requirements

 		
 Download and install

 		
 The Flask service and its sample processes

 		
 Configuration

 		
 [metadata:main]

 		
 [server]

 		
 [processing]

 		
 [logging]

 		
 [grass]

 		
 [s3]

 		
 Sample file

 		
 Processes

 		
 Writing a Process

 		
 Example vector buffer process

 		
 Declaring inputs and outputs

 		
 LiteralData

 		
 ComplexData

 		
 ComplexData Format and input validation

 		
 BoundingBoxData

 		
 Accessing the inputs and outputs in the handler method

 		
 Progress and status report

 		
 Returning large data

 		
 Returning multiple files

 		
 Example process

 		
 Process Exceptions

 		
 Example process

 		
 Process deployment

 		
 Running the dev server

 		
 Supporting multiple languages

 		
 Automated process documentation

 		
 Deployment to a production server

 		
 Deploying an individual PyWPS instance

 		
 Creating a PyWPS WSGI instance

 		
 Deployment on Apache2 httpd server

 		
 Deployment on Nginx-Gunicorn

 		
 Testing the deployment of a PyWPS instance

 		
 Migrating from PyWPS 3.x to 4.x

 		
 Configuration file

 		
 Single process definition

 		
 Inputs and outputs data manipulation

 		
 Deployment

 		
 Sample processes

 		
 Needed steps summarization

 		
 PyWPS and external tools

 		
 GRASS GIS

 		
 OpenLayers WPS client

 		
 ZOO-Project

 		
 QGIS WPS Client

 		
 Extensions

 		
 Job Scheduler Extension

 		
 Interactions of PyWPS with a scheduler system

 		
 Docker Container Extension

 		
 PyWPS API Doc

 		
 Process

 		
 Inputs and outputs

 		
 LiteralData

 		
 ComplexData

 		
 BoundingBoxData

 		
 Request and response objects

 		
 Processing

 		
 Contributing to PyWPS

 		
 Code of Conduct

 		
 Contributions and Licensing

 		
 GitHub Commit Access

 		
 GitHub Pull Requests

 		
 Contributions and Licensing Agreement Template

 		
 GitHub

 		
 Code Overview

 		
 Documentation

 		
 Bugs

 		
 Forking PyWPS

 		
 Development

 		
 GitHub Commit Guidelines

 		
 Coding Guidelines

 		
 Submitting a Pull Request

 		
 Release Packaging

 		
 Exceptions

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

