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PyWPS is a server side implementation of the OGC Web Processing Service (OGC WPS) standard, using the Python
programming language. PyWPS is currently supporting WPS 1.0.0. Support for the version 2.0.0. of OGC WPS
standard is presently being planned.

Like the bicycle in the logo, PyWPS is:

• simple to maintain

• fast to drive

• able to carry a lot

• easy to hack

Mount your bike and setup your PyWPS instance!

Todo:

• request queue management (probably linked from documentation)

• inputs and outputs IOhandler class description (file, stream, . . . )
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2 Contents



CHAPTER 1

Contents:

1.1 OGC Web Processing Service (OGC WPS)

OGC Web Processing Service standard provides rules for standardizing how inputs and outputs (requests and re-
sponses) for geospatial processing services. The standard also defines how a client can request the execution of a
process, and how the output from the process is handled. It defines an interface that facilitates the publishing of
geospatial processes and clients discovery of and binding to those processes. The data required by the WPS can be
delivered across a network or they can be available at the server.

Note: This description is mainly refering to 1.0.0 version standard, since PyWPS implements this version only. There
is also 2.0.0 version, which we are about to implement in near future.

WPS is intended to be state-less protocol (like any OGC services). For every request-response action, the negotiation
between the server and the client has to start. There is no official way, how to make the server “remember”, what was
before, there is no communication history between the server and the client.

1.1.1 Process

A process p is a function that for each input returns a corresponding output:

𝑝 : 𝑋 → 𝑌

where X denotes the domain of arguments x and Y denotes the co-domain of values y.

Within the specification, process arguments are referred to as process inputs and result values are referred to as process
outputs. Processes that have no process inputs represent value generators that deliver constant or random process
outputs.

Process is just some geospatial operation, which has it’s in- and outputs and which is deployed on the server. It can
be something relatively simple (adding two raster maps together) or very complicated (climate change model). It can
take short time (seconds) or long (days) to be calculated. Process is, what you, as PyWPS user, want to expose to other
people and let their data processed.

3
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Every process has the following properties:

Identifier Unique process identifier

Title Human readable title

Abstract Longer description of the process, what it does, how is it supposed to be used

And a list of inputs and outputs.

1.1.2 Data inputs and outputs

OGC WPS defines 3 types of data inputs and outputs: LiteralData, ComplexData and BoundingBoxData.

All data types do need to have following properties:

Identifier Unique input identifier

Title Human readable title

Abstract Longer description of data input or output, so that the user could get oriented.

minOccurs Minimal occurrence of the input (e.g. there can be more bands of raster file and they all can be passed as
input using the same identifier)

maxOccurs Maxium number of times, the input or output is present

Depending on the data type (Literal, Complex, BoundingBox), other attributes might occur too.

LiteralData

Literal data is any text string, usually short. It’s used for passing single parameters like numbers or text parameters.
WPS enables to the server, to define allowedValues - list or intervals of allowed values, as well as data type (integer,
float, string). Additional attributes can be set, such as units or encoding.

ComplexData

Complex data are usually raster or vector files, but basically any (usually file based) data, which are usually processed
(or result of the process). The input can be specified more using mimeType, XML schema or encoding (such as base64
for raster data.

Note: PyWPS (like every server) supports limited list mimeTypes. In case you need some new format, just create pull
request in our repository. Refer pywps.inout.formats.FORMATS for more details.

Usually, the minimum requirement for input data identification is mimeType. That usually is application/gml+xml for
GML-encoded vector files, image/tiff; subtype=geotiff for raster files. The input or output can also be result of any
OGC OWS service.

BoundingBoxData

Todo: add reference to OGC OWS Common spec

4 Chapter 1. Contents:
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BoundingBox data are specified in OGC OWS Common specification as two pairs of coordinate (for 2D and 3D
space). They can either be encoded in WGS84 or EPSG code can be passed too. They are intended to be used as
definition of the target region.

Note: In real life, BoundingBox data are not that commonly used

1.1.3 Passing data to process instance

There are typically 3 approaches to pass the input data from the client to the server:

Data are on the server already In the first case, the data are already stored on the server (from the point of view of
the client). This is the simplest case.

Data are send to the server along with the request In this case, the data are directly part of the XML encoded doc-
ument send via HTTP POST. Some clients/servers are expecting the data to be inserted in CDATA section. The
data can be text based (JSON), XML based (GML) or even raster based - in this case, they are usually encoded
using base64.

Reference link to target service is passed Client does not have to pass the data itself, client can just send reference
link to target data service (or file). In such case, for example OGC WFS GetFeatureType URL can be passed
and server will download the data automatically.

Although this is usually used for ComplexData input type, it can be used for literal and bounding box data too.

1.1.4 Synchronous versus asynchronous process request

There are two modes of process instance execution: Synchronous and asynchronous.

Synchronous mode The client sends the Execute request to the server and waits with open server connection, till the
process is calculated and final response is returned back. This is useful for fast calculations which do not take
longer then a couple of seconds (Apache2 httpd server uses 300 seconds as default value for ConnectionTime-
out).

Asynchronous mode Client sends the Execute request with explicit request for asynchronous mode. If supported by
the process (in PyWPS, we have a configuration for that), the server returns back ProcessAccepted response
immediately with URL, where the client can regularly check for process execution status.

Note: As you see, using WPS, the client has to apply pull method for the communication with the server.
Client has to be the active element in the communication - server is just responding to clients request and is not
actively pushing any information (like it would if e.g. web sockets would be implemented).

1.1.5 Process status

Process status is generic status of the process instance, reporting to the client, how does the calculation go. There are
4 types of process statuses

ProcessAccepted Process was accepted by the server and the process execution will start soon.

ProcessStarted Process calculation has started. The status also contains report about percentDone - calculation
progress and statusMessage - text reporting current calculation state (example: “Caculationg buffer” - 33%).

ProcessFinished Process instance performed the calculation successfully and the final Execute response is returned
to the client and/or stored on final location

1.1. OGC Web Processing Service (OGC WPS) 5

https://docs.python.org/3/library/base64.html
https://httpd.apache.org/docs/2.4/mod/core.html#timeout


PyWPS, Release 4.2.4

ProcessFailed There was something wrong with the process instance and the server reports server exception (see
pywps.exceptions) along with the message, what could possibly go wrong.

1.1.6 Request encoding, HTTP GET and POST

The request can be encoded either using key-value pairs (KVP) or an XML payload.

Key-value pairs is usually sent via HTTP GET request method encoded directly in the URL. The keys and values are
separated with = sign and each pair is separated with & sign (with ? at the beginning of the request. Example
could be the get capabilities reques:

http://server.domain/wps?service=WPS&request=GetCapabilities&version=1.0.0

In this example, there are 3 pairs of input parameter: service, request and version with values WPS, GetCapa-
bilities and 1.0.0 respectively.

XML payload is XML data sent via HTTP POST request method. The XML document can be more rich, having
more parameters, better to be parsed in complex structures. The Client can also encode entire datasets to the
request, including raster (encoded using base64) or vector data (usually as GML file).:

<?xml version="1.0" encoding="UTF-8"?>
<wps:GetCapabilities language="cz" service="WPS" xmlns:ows="http://www.opengis.
→˓net/ows/1.1" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:xsi="http://www.
→˓w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wps/
→˓1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsGetCapabilities_request.xsd">
<wps:AcceptVersions>

<ows:Version>1.0.0</ows:Version>
</wps:AcceptVersions>

</wps:GetCapabilities>

Note: Even it might be looking more complicated to use XML over KVP, for some complex request it usually is more
safe and efficient to use XML encoding. The KVP way, especially for WPS Execute request can be tricky and lead to
unpredictable errors.

1.2 PyWPS

Todo:

• how are things organised

• storage

• dblog

• relationship to grass gis

1.2.1 PyWPS philosophy

PyWPS is simple, fast to run, has low requirements on system resources, is modular. PyWPS solves the problem
of exposing geospatial calculations to the web, taking care of security, data download, request acceptance, process
running and final response construction. Therefore PyWPS has a bicycle in its logo.

6 Chapter 1. Contents:
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1.2.2 Why is PyWPS there

Many scientific researchers and geospatial services provider need to setup system, where the geospatial operations
would be calculated on the server, while the system resources could be exposed to clients. PyWPS is here, so that you
could set up the server fast, deploy your awesome geospatial calculation and expose it to the world. PyWPS is written
in Python with support for many geospatial tools out there, like GRASS GIS, R-Project or GDAL. Python is the most
geo-positive scripting language out there, therefore all the best tools have their bindings to Python in their pocket.

1.2.3 PyWPS History

PyWPS started in 2006 as scholarship funded by German Foundation for Environment. During the years, it grow to
version 4.0.x. In 2015, we officially entered to OSGeo incubation process. In 2016, Project Steering Committee has
started. PyWPS was originally hosted by the Wald server, nowadays, we moved to GeoPython group on GitHub. Since
2016, we also have new domain PyWPS.org.

You can find more at history page.

1.3 Installation

Note: PyWPS is not tested on the MS Windows platform. Please join the development team if you need this platform
to be supported. This is mainly because of the lack of a multiprocessing library. It is used to process asynchronous
execution, i.e., when making requests storing the response document and updating a status document displaying the
progress of execution.

1.3.1 Dependencies and requirements

PyWPS runs on Python 2.7, 3.3 or higher. PyWPS is currently tested and developed on Linux (mostly Ubuntu). In the
documentation we take this distribution as reference.

Prior to installing PyWPS, Git and the Python bindings for GDAL must be installed in the system. In Debian based
systems these packages can be installed with a tool like apt:

$ sudo apt-get install git python-gdal

Alternatively, if GDAL is already installed on your system you can install the GDAL Python bindings via pip with:

$ pip install GDAL==1.10.0 --global-option=build_ext --global-option="-I/usr/include/
→˓gdal"

1.3.2 Download and install

Using pip The easiest way to install PyWPS is using the Python Package Index (PIP). It fetches the source code from
the repository and installs it automatically in the system. This might require superuser permissions (e.g. sudo in
Debian based systems):

$ sudo pip install -e git+https://github.com/geopython/pywps.git@master#egg=pywps-
→˓dev

1.3. Installation 7
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Todo:

• document Debian / Ubuntu package support

Manual installation Manual installation of PyWPS requires downloading the source code followed by usage of the
setup.py script. An example again for Debian based systems (note the usage of sudo for install):

$ tar zxf pywps-x.y.z.tar.gz
$ cd pywps-x.y.z/

Then install the package dependencies using pip:

$ pip install -r requirements.txt
$ pip install -r requirements-gdal.txt # for GDAL Python bindings (if python-
→˓gdal is not already installed by `apt-get`)
$ pip install -r requirements-dev.txt # for developer tasks

To install PyWPS system-wide run:

$ sudo python setup.py install

For Developers Installation of the source code using Git and Python’s virtualenv tool:

$ virtualenv my-pywps-env
$ cd my-pywps-env
$ source bin/activate
$ git clone https://github.com/geopython/pywps.git
$ cd pywps

Then install the package dependencies using pip as described in the Manual installation section. To install
PyWPS:

$ python setup.py install

Note that installing PyWPS via a virtualenv environment keeps the installation of PyWPS and its dependencies
isolated to the virtual environment and does not affect other parts of the system. This installation option is handy
for development and / or users who may not have system-wide administration privileges.

1.3.3 Initialize database

Before you can start the service you need to initialize or upgrade the database:

$ pywps -c pywps.cfg migrate

1.3.4 The Flask service and its sample processes

To use PyWPS the user must code processes and publish them through a service. An example service is available
that makes up a good starting point for first time users. It launches a very simple built-in server (relying on the Flask
Python Microframework), which is good enough for testing but probably not appropriate for production. This example
service can be cloned directly into the user area:

$ git clone https://github.com/geopython/pywps-flask.git

8 Chapter 1. Contents:
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It may be run right away through the demo.py script. First time users should start by studying the structure of this
project and then code their own processes.

There is also an example service

Full more details please consult the Processes section. The example service contains some basic processes too, so you
could get started with some examples (like area, buffer, feature_count and grassbuffer). These processes are to be
taken just as inspiration and code documentation - most of them do not make any sense (e.g. sayhello).

1.4 Configuration

PyWPS is configured using a configuration file. The file uses the ConfigParser format, with interpolation initialised
using os.environ.

New in version 4.0.0.

Warning: Compatibility with PyWPS 3.x: major changes have been made to the config file in order to allow for
shared configurations with PyCSW and other projects.

The configuration file has several sections:

• metadata:main for the server metadata inputs

• server for server configuration

• jobqueue for job queue configuration

• processing for processing backend configuration

• logging for logging configuration

• grass for optional configuration to support GRASS GIS

• s3 for optional configuration to support AWS S3 storage

PyWPS ships with a sample configuration file (default-sample.cfg). A similar file is also available in the flask
service as described in The Flask service and its sample processes section.

Copy the file to default.cfg and edit the following:

1.4.1 [metadata:main]

The [metadata:main] section was designed according to the PyCSW project configuration file.

identification_title the title of the service

identification_abstract some descriptive text about the service

identification_keywords comma delimited list of keywords about the service

identification_keywords_type keyword type as per the ISO 19115 MD_KeywordTypeCode codelist).
Accepted values are discipline, temporal, place, theme, stratum

identification_fees fees associated with the service

identification_accessconstraints access constraints associated with the service

provider_name the name of the service provider

provider_url the URL of the service provider
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contact_name the name of the provider contact

contact_position the position title of the provider contact

contact_address the address of the provider contact

contact_city the city of the provider contact

contact_stateorprovince the province or territory of the provider contact

contact_postalcode the postal code of the provider contact

contact_country the country of the provider contact

contact_phone the phone number of the provider contact

contact_fax the facsimile number of the provider contact

contact_email the email address of the provider contact

contact_url the URL to more information about the provider contact

contact_hours the hours of service to contact the provider

contact_instructions the how to contact the provider contact

contact_role the role of the provider contact as per the ISO 19115 CI_RoleCode
codelist). Accepted values are author, processor, publisher, custodian,
pointOfContact, distributor, user, resourceProvider, originator, owner,
principalInvestigator

1.4.2 [server]

url the URL of the WPS service endpoint

language a comma-separated list of ISO 639-1 language and ISO 3166-1 alpha2 country code of the
service (e.g. en-CA, fr-CA, en-US)

encoding the content type encoding (e.g. ISO-8859-1, see https://docs.python.org/2/library/codecs.
html#standard-encodings). Default value is ‘UTF-8’

processes optional parameter to configure the list of processes. See Starting PyWPS using Werkzeug.
It is using a Python expression which will be loaded using importlib. For example use
myapp.processes.processes which points to the Python list of your processes in your application:
processes = [Sleep(), SayHello()].

parallelprocesses maximum number of parallel running processes - set this number carefully. The ef-
fective number of parallel running processes is limited by the number of cores in the processor of
the hosting machine. As well, speed and response time of hard drives impact ultimate processing
performance. A reasonable number of parallel running processes is not higher than the number of
processor cores.

maxrequestsize maximal request size. 0 for no limit

maxprocesses maximal number of requests being stored in queue, waiting till they can be processed (see
parallelprocesses configuration option).

workdir a directory to store all temporary files (which should be always deleted, once the process is
finished).

outputpath server path where to store output files.

outputurl corresponding URL
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allowedinputpaths server paths which are allowed to be used by file URLs. A list of paths must be
seperated by :.

Example: /var/lib/pywps/downloads:/var/lib/pywps/public

By default no input paths are allowed.

cleantempdir flag to enable removal of process temporary workdir after process has finished.

Default = true.

Note: outputpath and outputurl must correspond. outputpath is the name of the resulting target directory, where
all output data files are stored (with unique names). outputurl is the corresponding full URL, which is targeting to
outputpath directory.

Example: outputpath=/var/www/wps/outputs shall correspond with outputurl=http://foo.bar/wps/outputs

storagetype The type of storage to use when storing status and results. Possible values are: file, s3.
Defaults to file.

1.4.3 [processing]

mode the mode/backend used for processing. Possible values are: default, multiprocessing and sched-
uler. default is the same as multiprocessing and is the default value . . . all processes are executed
using the Python multiprocessing module on the same machine as the PyWPS service. scheduler
is used to enable the job scheduler extension and process execution is delegated to a configured
scheduler system like Slurm and Grid Engine.

path path to the PyWPS joblauncher executable. This option is only used for the scheduler backend and
is by default set automatically: os.path.dirname(os.path.realpath(sys.argv[0]))

1.4.4 [logging]

level the logging level (see https://docs.python.org/3/library/logging.html#logging-levels)

format the format string used by the logging :Formatter: (see https://docs.python.org/3/library/
logging.html#logging.Formatter). For example: %(asctime)s] [%(levelname)s]
%(message)s.

file the full file path to the log file for being able to see possible error messages.

database Connection string to database where the login about requests/responses is to be stored. We are
using SQLAlchemy please use the configuration string. The default is SQLite3 :memory: object,
however this has known issues with async processing and should be avoided.

db_echo flag to enable database logging.

Default = false.

1.4.5 [grass]

gisbase directory of the GRASS GIS instalation, refered as GISBASE
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1.4.6 [jobqueue]

pause pausing in seconds between periodical check for new stored requests

1.4.7 [s3]

bucket Name of the bucket to store files in. e.g. my-wps-results

region Region in which the bucket refered to above exists. e.g. us-east-1

public Set this to true if public access to status and result files is desired. Defaults to false.

prefix Prefix to prepend to all file paths written to the S3 bucket by PyWPS. e.g. wps/results

encrypt Set this to true if encryption at rest is desired. Defaults to false

Sample file

[server]
encoding=utf-8
language=en-US
url=http://localhost/wps
maxoperations=30
maxinputparamlength=1024
maxsingleinputsize=
maxrequestsize=3mb
temp_path=/tmp/pywps/
processes_path=
outputurl=/data/
outputpath=/tmp/outputs/
workdir=
allowedinputpaths=/tmp
storagetype=file

[metadata:main]
identification_title=PyWPS Processing Service
identification_abstract=PyWPS is an implementation of the Web Processing Service
→˓standard from the Open Geospatial Consortium. PyWPS is written in Python.
identification_keywords=PyWPS,WPS,OGC,processing
identification_keywords_type=theme
identification_fees=NONE
identification_accessconstraints=NONE
provider_name=Organization Name
provider_url=https://pywps.org/
contact_name=Lastname, Firstname
contact_position=Position Title
contact_address=Mailing Address
contact_city=City
contact_stateorprovince=Administrative Area
contact_postalcode=Zip or Postal Code
contact_country=Country
contact_phone=+xx-xxx-xxx-xxxx
contact_fax=+xx-xxx-xxx-xxxx
contact_email=Email Address
contact_url=Contact URL
contact_hours=Hours of Service

(continues on next page)
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(continued from previous page)

contact_instructions=During hours of service. Off on weekends.
contact_role=pointOfContact

[processing]
mode=default

[logging]
level=INFO
file=logs/pywps.log
database=sqlite:///logs/pywps-logs.sqlite3
format=%(asctime)s] [%(levelname)s] file=%(pathname)s line=%(lineno)s module=
→˓%(module)s function=%(funcName)s %(message)s

[grass]
gisbase=/usr/local/grass-7.3.svn/

[jobqueue]
pause=30

[s3]
bucket=my-org-wps
region=us-east-1
prefix=appname/coolapp/
public=true
encrypt=false

1.5 Processes

New in version 4.0.0.

Todo:

• Input validation

• IOHandler

PyWPS works with processes and services. A process is a Python Class containing an handler method and a list of
inputs and outputs. A PyWPS service instance is then a collection of selected processes.

PyWPS does not ship with any processes predefined - it’s on you, as user of PyWPS to set up the processes of your
choice. PyWPS is here to help you publishing your awesome geospatial operation on the web - it takes care of
communication and security, you then have to add the content.

Note: There are some example processes in the PyWPS-Flask project.

1.5.1 Writing a Process

Note: At this place, you should prepare your environment for final Deployment to a production server. At least, you
should create a single directory with your processes, which is typically named processes:
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$ mkdir processes

In this directory, we will create single python scripts containing processes.

Processes can be located anywhere in the system as long as their location is identified in the PYTHONPATH environ-
ment variable, and can be imported in the final server instance.

A processes is coded as a class inheriting from Process. In the PyWPS-Flask server they are kept inside the
processes folder, usually in separated files.

The instance of a Process needs following attributes to be configured:

identifier unique identifier of the process

title corresponding title

inputs list of process inputs

outputs list of process outputs

handler method which recieves pywps.app.WPSRequest and pywps.response.
WPSResponse as inputs.

1.5.2 Example vector buffer process

As an example, we will create a buffer process - which will take a vector file as the input, create specified the buffer
around the data (using Shapely), and return back the result.

Therefore, the process will have two inputs:

• ComplexData input - the vector file

• LiteralData input - the buffer size

And it will have one output:

• ComplexData output - the final buffer

The process can be called demobuffer and we can now start coding it:

$ cd processes
$ $EDITOR demobuffer.py

At the beginning, we have to import the required classes and modules

Here is a very basic example:

28 from pywps import Process, LiteralInput, ComplexOutput, ComplexInput, Format
29 from pywps.app.Common import Metadata
30 from pywps.validator.mode import MODE
31 from pywps.inout.formats import FORMATS

As the next step, we define a list of inputs. The first input is pywps.ComplexInput with the identifier vector, title
Vector map and there is only one allowed format: GML.

The next input is pywps.LiteralInput, with the identifier size and the data type set to float:

33

34 inpt_vector = ComplexInput(
35 'vector',

(continues on next page)

14 Chapter 1. Contents:

https://github.com/geopython/pywps-flask
https://shapely.readthedocs.io


PyWPS, Release 4.2.4

(continued from previous page)

36 'Vector map',
37 supported_formats=[Format('application/gml+xml')],
38 mode=MODE.STRICT
39 )
40

Next we define the output output as pywps.ComplexOutput. This output supports GML format only.

42

43 out_output = ComplexOutput(
44 'output',
45 'HelloWorld Output',
46 supported_formats=[Format('application/gml+xml')]

Next we create a new list variables for inputs and outputs.

48

49 inputs = [inpt_vector, inpt_size]

Next we define the handler method. In it, geospatial analysis may happen. The method gets a pywps.app.
WPSRequest and a pywps.response.WPSResponse object as parameters. In our case, we calculate the buffer
around each vector feature using GDAL/OGR library. We will not got much into the details, what you should note
is how to get input data from the pywps.app.WPSRequest object and how to set data as outputs in the pywps.
response.WPSResponse object.

68 @staticmethod
69 def _handler(request, response):
70 """Handler method - this method obtains request object and response
71 object and creates the buffer
72 """
73

74 from osgeo import ogr
75

76 # obtaining input with identifier 'vector' as file name
77 input_file = request.inputs['vector'][0].file
78

79 # obtaining input with identifier 'size' as data directly
80 size = request.inputs['size'][0].data
81

82 # open file the "gdal way"
83 input_source = ogr.Open(input_file)
84 input_layer = input_source.GetLayer()
85 layer_name = input_layer.GetName()
86

87 # create output file
88 driver = ogr.GetDriverByName('GML')
89 output_source = driver.CreateDataSource(
90 layer_name,
91 ["XSISCHEMAURI=http://schemas.opengis.net/gml/2.1.2/feature.xsd"])
92 output_layer = output_source.CreateLayer(layer_name, None, ogr.wkbUnknown)
93

94 # get feature count
95 count = input_layer.GetFeatureCount()
96 index = 0
97

98 # make buffer for each feature

(continues on next page)
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99 while index < count:
100

101 response._update_status(WPS_STATUS.STARTED, 'Buffering feature {}'.
→˓format(index), float(index) / count)

102

103 # get the geometry
104 input_feature = input_layer.GetNextFeature()
105 input_geometry = input_feature.GetGeometryRef()
106

107 # make the buffer
108 buffer_geometry = input_geometry.Buffer(float(size))
109

110 # create output feature to the file
111 output_feature = ogr.Feature(feature_def=output_layer.GetLayerDefn())
112 output_feature.SetGeometryDirectly(buffer_geometry)
113 output_layer.CreateFeature(output_feature)
114 output_feature.Destroy()
115 index += 1
116

117 # set output format
118 response.outputs['output'].data_format = FORMATS.GML
119

120 # set output data as file name
121 response.outputs['output'].file = layer_name
122

123 return response

At the end, we put everything together and create new a DemoBuffer class with handler, inputs and outputs. It’s based
on pywps.Process:

51 class DemoBuffer(Process):
52 def __init__(self):
53

54 super(DemoBuffer, self).__init__(
55 _handler,
56 identifier='demobuffer',
57 version='1.0.0',
58 title='Buffer',
59 abstract='This process demonstrates, how to create any process in PyWPS

→˓environment',
60 metadata=[Metadata('process metadata 1', 'http://example.org/1'),
61 Metadata('process metadata 2', 'http://example.org/2')],
62 inputs=inputs,
63 outputs=outputs,
64 store_supported=True,
65 status_supported=True
66 )

1.5.3 Declaring inputs and outputs

Clients need to know which inputs the processes expects. They can be declared as pywps.Input objects in the
Process class declaration:

from pywps import Process, LiteralInput, LiteralOutput

(continues on next page)
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(continued from previous page)

class FooProcess(Process):
def __init__(self):

inputs = [
LiteralInput('foo', data_type='string'),
ComplexInput('bar', [Format('text/xml')])

]
outputs = [

LiteralOutput('foo_output', data_type='string'),
ComplexOutput('bar_output', [Format('JSON')])

]

super(FooProcess, self).__init__(
...
inputs=inputs,
outputs=outputs

)
...

Note: A more generic description can be found in OGC Web Processing Service (OGC WPS) chapter.

LiteralData

• LiteralInput

• LiteralOutput

A simple value embedded in the request. The first argument is a name. The second argument is the type, one of string,
float, integer or boolean.

ComplexData

• ComplexInput

• ComplexOutput

A large data object, for example a layer. ComplexData do have a format attribute as one of their key properties. It’s
either a list of supported formats or a single (already selected) format. It shall be an instance of the pywps.inout.
formats.Format class.

ComplexData Format and input validation

The ComplexData needs as one of its parameters a list of supported data formats. They are derived from the Format
class. A Format instance needs, among others, a mime_type parameter, a validate method – which is used for input
data validation – and also a mode parameter – defining how strict the validation should be (see pywps.validator.
mode.MODE).

The Validate method is up to you, the user, to code. It requires two input paramers - data_input (a ComplexInput
object), and mode. This methid must return a boolean value indicating whether the input data are considered
valid or not for given mode. You can draw inspiration from the pywps.validator.complexvalidator.
validategml() method.

The good news is: there are already predefined validation methods for the ESRI Shapefile, GML and GeoJSON
formats, using GDAL/OGR. There is also an XML Schema validaton and a JSON schema validator - you just have to
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pick the propper supported formats from the pywps.inout.formats.FORMATS list and set the validation mode
to your ComplexInput object.

Even better news is: you can define custom validation functions and validate input data according to your needs.

BoundingBoxData

• BoundingBoxInput

• BoundingBoxOutput

BoundingBoxData contain information about the bounding box of the desired area and coordinate reference system.
Interesting attributes of the BoundingBoxData are:

crs current coordinate reference system

dimensions number of dimensions

ll pair of coordinates (or triplet) of the lower-left corner

ur pair of coordinates (or triplet) of the upper-right corner

1.5.4 Accessing the inputs and outputs in the handler method

Handlers receive as input argument a WPSRequest object. Input values are found in the inputs dictionary:

@staticmethod
def _handler(request, response):

name = request.inputs['name'][0].data
response.outputs['output'].data = 'Hello world %s!' % name
return response

inputs is a plain Python dictionary. Most of the inputs and outputs are derived from the IOHandler class. This
enables the user to access the data in four different ways:

input.file Returns a file name - you can access the data using the name of the file stored on the hard drive.

input.url Return a link to the resource using either the file:// or http:// scheme. The target of the url is not
downloaded to the PyWPS server until its content is explicitly accessed through either one of the file, data
or stream attributes.

input.data Is the direct link to the data themselves. No need to create a file object on the hard drive or opening the file
and closing it - PyWPS will do everything for you.

input.stream Provides the IOStream of the data. No need for opening the file, you just have to read() the data.

Because there could be multiple input values with the same identifier, the inputs are accessed with an index. For
example:

request.inputs['file_input'][0].file
request.inputs['data_input'][0].data
request.inputs['stream_input'][0].stream
url_input = request.inputs['url_input'][0]

As mentioned, if an input is a link to a remote file (an http address), accessing the url attribute simply returns the
url’s string, but accessing any other attribute triggers the file’s download:

url_input.url # returns the link as a string (no download)
url_input.file # downloads target and returns the local path
url_input.data # returns the content of the local copy
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PyWPS will persistently transform the input (and output) data to the desired form. You can also set the data for your
Output object like output.data = 1 or output.file = “myfile.json” - it works the same way. However, once the source
type is set, it cannot be changed. That is, a ComplexOutput whose data attribute has been set once has read-only
access to the three other attributes (file, stream and url), while the data attribute can be freely modified.

1.5.5 Progress and status report

OGC WPS standard enables asynchronous process execution call, that is in particular useful, when the process execu-
tion takes longer time - process instance is set to background and WPS Execute Response document with ProcessAc-
cepted messag is returned immediately to the client. The client has to check statusLocation URL, where the current
status report is deployed, say every n-seconds or n-minutes (depends on calculation time). Content of the response
is usually percentDone information about the progress along with statusMessage text information, what is currently
happening.

You can set process status any time in the handler using the WPSResponse.update_status() function.

1.5.6 Returning large data

WPS allows for a clever method of returning a large data file: instead of embedding the data in the response, it can
be saved separately, and a URL is returned from where the data can be downloaded. In the current implementation,
PyWPS saves the file in a folder specified in the configuration passed by the service (or in a default location). The
URL returned is embedded in the XML response.

This behaviour can be requested either by using a GET:

...ResponseDocument=output=@asReference=true...

Or a POST request:

...
<wps:ResponseForm>

<wps:ResponseDocument>
<wps:Output asReference="true">

<ows:Identifier>output</ows:Identifier>
<ows:Title>Some Output</ows:Title>

</wps:Output>
</wps:ResponseDocument>

</wps:ResponseForm>
...

output is the identifier of the output the user wishes to have stored and accessible from a URL. The user may request
as many outputs by reference as needed, but only one may be requested in RAW format.

1.5.7 Returning multiple files

When a process accepts a variable number of inputs, it often makes sense to return a variable number of outputs.
The WPS standard does not however readily accommodate this. One pragmatic solution is to compress the files into
a single output archive (e.g. zip file), but this proves to be awkward when the outputs are really just references to
resources (URLs). In this case, another pragmatic solution is to return a simple text file storing the list of references.
One issue with this is that it provides clients very little metadata about the file content.

Although it would be fairly easy to define a json output file storing the properties and URLs of multiple files, it would
require an ad-hoc implementation on the client side to parse the json and extract the urls metadata. Fortunately, the
metalink standard already exists precisely to bundle references to multiples files.
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Metalink files are XML documents collecting a set of remote files. It was originally designed to describe the location of
larges files stored on multiple mirrors or peer-to-peer networks. If one location goes down during download, metalink
clients can switch to another mirror. Also, large files can be split into segments and downloaded concurrently from
different locations, speeding up downloads. A metalink can also describe the location of files made for different
operating systems and languages, with clients automatically selecting the most appropriate one.

Metalink support in PyWPS includes:

• pywps.FORMATS.METALINK and pywps.FORMATS.META4

• helper classes MetaFile, MetaLink and MetaLink4

• validation of generated metalink files using XML schemas

• size (bytes) and checksums (sha-256) for each file in the metalink document

To use metalink in a process, define a ComplexOutput with a metalink mimetype. Then after the handler has
generated a list of file, instantiate one MetaFile object for each output file, and append them to a MetaLink or
MetaLink4 instance. Finally, set the data property of the output to the xml generated by the xml property of the
MetaLink instance.

Note: MetaLink uses metalink standard version 3.0, while MetaLink4 uses version 4.0.

Example process

from pywps import Process, LiteralInput, ComplexOutput, FORMATS
from pywps.inout.outputs import MetaLink4, MetaFile

class MultipleOutputs(Process):
def __init__(self):

inputs = [
LiteralInput('count', 'Number of output files',

abstract='The number of generated output files.',
data_type='integer',
default=2)]

outputs = [
ComplexOutput('output', 'Metalink4 output',

abstract='A metalink file storing URIs to multiple files',
as_reference=True,
supported_formats=[FORMATS.META4])

]

super(MultipleOutputs, self).__init__(
self._handler,
identifier='multiple-outputs',
title='Multiple Outputs',
abstract='Produces multiple files and returns a document'

' with references to these files.',
inputs=inputs,
outputs=outputs,
store_supported=True,
status_supported=True

)

def _handler(self, request, response):

(continues on next page)
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max_outputs = request.inputs['count'][0].data

ml = MetaLink4('test-ml-1', 'MetaLink with links to text files.',
→˓workdir=self.workdir)

for i in range(max_outputs):
# Create a MetaFile instance, which instantiates a ComplexOutput object.
mf = MetaFile('output_{}'.format(i), 'Test output', format=FORMATS.TEXT)
mf.data = 'output: {}'.format(i) # or mf.file = <path to file> or mf.url

→˓= <url>
ml.append(mf)

# The `xml` property of the Metalink4 class returns the metalink content.
response.outputs['output'].data = ml.xml
return response

1.5.8 Process Exceptions

Any uncatched exception in the process execution will be handled by PyWPS and reported to the WPS client using an
ows:Exception. PyWPS will only log the traceback and report a common error message like:

Process failed, please check server error log.

This sparse error message is used to avoid security issues by providing internal service information in an uncontrolled
way.

But in some cases you want to provide a user-friendly error message to give the user a hint of what went wrong
with the processing job. In this case you can use the pywps.app.exceptions.ProcessError exception.
The error message will be send to the user encapsulated as ows:Exception. The pywps.app.exceptions.
ProcessError validates the error message to make sure it is not too long and it does not contain any suspicious
characters.

Note: By default a valid error message must have a length between 3 and 144 characters. Only alpha-numeric
characters and a few special ones are allowed. The allowed special characters are: “.”, “:”, “!”, “?”, “=”, “,”, “-“.

Note: During the process development you might want to get a traceback shown in ows:Exception. This is possible
by running PyWPS in debug mode. In pywps.cfg config file set:

[logging]
level=DEBUG

Example process

from pywps import Process, LiteralInput
from pywps.app.Common import Metadata
from pywps.app.exceptions import ProcessError

import logging
LOGGER = logging.getLogger("PYWPS")

(continues on next page)
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class ShowError(Process):
def __init__(self):

inputs = [
LiteralInput('message', 'Error Message', data_type='string',

abstract='Enter an error message that will be returned.',
default="This process failed intentionally.",
min_occurs=1,)]

super(ShowError, self).__init__(
self._handler,
identifier='show_error',
title='Show a WPS Error',
abstract='This process will fail intentionally with a WPS error message.',
metadata=[

Metadata('User Guide', 'https://pywps.org/')],
version='1.0',
inputs=inputs,
# outputs=outputs,
store_supported=True,
status_supported=True

)

@staticmethod
def _handler(request, response):

response.update_status('PyWPS Process started.', 0)

LOGGER.info("Raise intentionally an error ...")
raise ProcessError(request.inputs['message'][0].data)

1.5.9 Process deployment

In order for clients to invoke processes, a PyWPS Service class must be present with the ability to listen for requests.
An instance of this class must created, receiving instances of all the desired processes classes.

In the flask example service the Service class instance is created in the Server class. Server is a development
server that relies on Flask. The publication of processes is encapsulated in demo.py, where a main method passes a
list of processes instances to the Server class:

from pywps import Service
from processes.helloworld import HelloWorld
from processes.demobuffer import DemoBuffer

...
processes = [ DemoBuffer(), ... ]

server = Server(processes=processes)

...

1.5.10 Running the dev server

The The Flask service and its sample processes server is a WSGI application that accepts incoming Execute requests
and calls the appropriate process to handle them. It also answers GetCapabilities and DescribeProcess requests based
on the process identifier and their inputs and outputs.

22 Chapter 1. Contents:

http://flask.pocoo.org
http://werkzeug.pocoo.org/docs/terms/#wsgi


PyWPS, Release 4.2.4

A host, a port, a config file and the processes can be passed as arguments to the Server constructor. host and port
will be prioritised if passed to the constructor, otherwise the contents of the config file (pywps.cfg) are used.

Use the run method to start the server:

...
s = Server(host='localhost', processes=processes, config_file=config_file)
s.run()
...

To make the server visible from another computer, replace localhost with 0.0.0.0.

1.5.11 Supporting multiple languages

Supporting multiple languages requires:

• Setting the language property in the server configuration (see [server])

• Adding translations to Process, inputs and outputs objects

The expected translations format is always the same. The first key is the RFC 4646 language code, and the nested
mapping contains translated strings accessible by a string property:

from pywps import Process, LiteralInput, LiteralOutput

class SayHello(Process):
def __init__(self):

inputs = [
LiteralInput(

'name',
title='Input name',
abstract='The name to say hello to.',
translations={"fr-CA": {"abstract": "Le nom à saluer."}}

)
],
outputs=[

LiteralOutput(
'response',
title='Output response',
abstract='The complete output message.',
translations={"fr-CA": {

"title": "La réponse",
"abstract": "Le message complet."

}}
)

],

super().__init__(
self._handler,
identifier='say_hello',
title='Process Say Hello',
abstract='Returns a literal string output with Hello plus the inputed name

→˓',
version='1.0',
inputs=inputs,
outputs=outputs,
store_supported=True,

(continues on next page)
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(continued from previous page)

status_supported=True,
translations={"fr-CA": {

"title": "Processus Dire Bonjour",
"abstract": "Retourne une chaine de caractères qui dit bonjour au nom

→˓fournit en entrée."
}},

)

def _handler(self, request, response):
...

The translation will default to the untranslated attribute of the base object if the key is not provided in the translations
dictionnary.

1.5.12 Automated process documentation

A Process can be automatically documented with Sphinx using the autoprocess directive. The Process object
is instantiated and its content examined to create, behind the scenes, a docstring in the Numpy format. This lets
developers embed the documentation directly in the code instead of having to describe each process manually. For
example:

.. autoprocess:: pywps.tests.DocExampleProcess
:docstring:
:skiplines: 1

would yield

class pywps.tests.DocExampleProcess
doc_example_process_identifier Process title (v4.0)

Multiline process abstract.

Parameters

• literal_input (integer, optional, units:[meters, feet]) – Literal
input value abstract.

• date_input ({'2000-01-01', '2018-01-01'}) – The title is shown when no
abstract is provided.

• complex_input (application/json, application/x-netcdf) – Complex
input abstract.

• bb_input ([EPSG:4326]) – BoundingBox input title (EPSG.io)

Returns

• literal_output (boolean) – Boolean output abstract.

• complex_output (text/plain) – Complex output

• bb_output ([EPSG:4326]) – BoundingBox output title

References

• PyWPS docs

• NumPy docstring conventions
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Notes

This is additional documentation that can be added following the Numpy docstring convention.

The docstring option fetches the Process docstring and appends it after the Reference section. The first lines of
this docstring can be skipped using the skiplines option.

To use the autoprocess directive, first add ‘sphinx.ext.napoleon’ and ‘pywps.ext_autodoc’ to the list of extensions in
the Sphinx configuration file conf.py. Then, insert autoprocess directives in your documentation source files, just
as you would use an autoclass directive, and build the documentation.

Note that for input and output parameters, the title is displayed only if no abstract is defined. In other words, if both
title and abstract are given, only the abstract will be included in the documentation to avoid redundancy.

1.6 Deployment to a production server

PyWPS consists from two main parts: * PyWPS pywps.app.Service the main process to accept client requests,
* :py:module::pywps.queue responsible for calling the stored requests in the asynchronous mode.

1.6.1 Service module

The pywps.app.Service class is responsible for synchronous request executions: GetCapabilites, DescribePro-
cess and Execute in sync. mode, in this case, the Service class will

1. Accept request

2. Execute request is processed in two modes:

a. In case, the request is to be executed in synchronous mode, it will be directly executed - sync requests are
immediately executed.

b. In case, the request is to be executed as asynchronous mode, request will be stored in to the database.

This means: asynchronous requests are not executed by the Service class, they will be just stored into database.

1.6.2 Queue module

The :py:module::pywps.queue has a JobQueueService to be started separately - it will start a process, which will
periodically check for the database stored requests and in case, some process is there, it will removed and executed.

The service does only start as many processes are allowed in the parallelprocesses process number.

The service does not accept requests from the client, it is just watching the database and starting process jobs.

1.6.3 Installation

As already described in the Installation section, no specific deployment procedures are for PyWPS when using flask-
based server. But this formula is not intended to be used in a production environment. For production, sudo service
apache2 restartApache httpd or nginx servers are more advised. PyWPS is run as a WSGI application on those servers.
PyWPS relies on the Werkzeug library for this purpose.

Then the job queue service has to be started too.
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Deploying an individual PyWPS instance

PyWPS should be installed in your computer (as per the Installation section). As a following step, you can now create
several instances of your WPS server.

It is advisable for each PyWPS instance to have its own directory, where the WSGI file along with available processes
should reside. Therefore create a new directory for the PyWPS instance:

$ sudo mkdir /path/to/pywps/

# create a directory for your processes too
$ sudo mkdir /path/to/pywps/processes

Note: In this configuration example it is assumed that there is only one instance of PyWPS on the server.

Each instance is represented by a single WSGI script (written in Python), which:

1. Loads the configuration files

2. Serves processes

3. Takes care about maximum number of concurrent processes and similar

Starting PyWPS using Werkzeug

PyWPS has a command line interface to start a PyWPS instance with Werkzeug for development purposes. You need
a configuration file `pywps.cfg pointing to the available processes:

[server]
processes = myapp.processes.processes

Start the pywps with the following command:

$ export PYTHONPATH=/path/to/myapp # add myapp to Python modules
$ pywps -c pywps.cfg start

You can also start the pywps service and the job queue as seperated processes:

$ pywps -c pywps.cfg start --no-jobqueue
$ pywps -c pywps.cfg jobqueue

Creating a PyWPS WSGI instance

An example WSGI script is distributed along with the pywps-flask service, as described in the Installation section.
The script is actually straightforward - in fact, it’s a just wrapper around the PyWPS server with a list of processes and
configuration files passed as arguments. Here is an example of a PyWPS WSGI script:

$ $EDITOR /path/to/pywps/pywps.wsgi

1 #!/usr/bin/env python3
2

3 from pywps.app.Service import Service
4

5 # processes need to be installed in PYTHON_PATH

(continues on next page)
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(continued from previous page)

6 from processes.sleep import Sleep
7 from processes.ultimate_question import UltimateQuestion
8 from processes.centroids import Centroids
9 from processes.sayhello import SayHello

10 from processes.feature_count import FeatureCount
11 from processes.buffer import Buffer
12 from processes.area import Area
13

14 processes = [
15 FeatureCount(),
16 SayHello(),
17 Centroids(),
18 UltimateQuestion(),
19 Sleep(),
20 Buffer(),
21 Area()
22 ]
23

24 # Service accepts two parameters:
25 # 1 - list of process instances
26 # 2 - list of configuration files
27 application = Service(
28 processes,
29 ['/path/to/pywps/pywps.cfg']
30 )

Note: The WSGI script is assuming that there are already some processes at hand that can be directly included. Also
it assumes, that the configuration file already exists - which is not the case yet.

The Configuration is described in next chapter (Configuration), as well as process creation and deployment (Pro-
cesses).

Deployment on Apache2 httpd server

First, the WSGI module must be installed and enabled:

$ sudo apt-get install libapache2-mod-wsgi
$ sudo a2enmod wsgi

You then can edit your site configuration file (/etc/apache2/sites-enabled/yoursite.conf ) and add the following:

# PyWPS
WSGIDaemonProcess pywps home=/path/to/pywps user=www-data group=www-data processes=2
→˓threads=5
WSGIScriptAlias /pywps /path/to/pywps/pywps.wsgi process-group=pywps

<Directory /path/to/pywps/>
WSGIScriptReloading On
WSGIProcessGroup pywps
WSGIApplicationGroup %{GLOBAL}
Require all granted

</Directory>
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Note: WSGIScriptAlias points to the pywps.wsgi script created before - it will be available under the url http://
localhost/pywps

Note: Please make sure that the logs, workdir, and outputpath directories are writeable to the Apache user. The
outputpath directory need also be accessible from the URL mentioned in outputurl configuration.

And of course restart the server:

$ sudo service apache2 restart

Deployment on Nginx-Gunicorn

Note: We will use Greenunicorn for pyWPS deployment, since it is a very simple to configurate server.

For difference between WSGI server consult: WSGI comparison.

uWSGU is more popular than gunicorn, best documentation is probably to be found at Readthedocs.

We need nginx and gunicorn server:

$ apt install nginx-full
$ apt install gunicorn3

It is assumed that PyWPS is installed in your system (if not see: ref:installation) and we will use pywps-flask as
installation example.

First, cloning the pywps-flask example to the root / (you need to be sudoer or root to run the examples):

$ cd /
$ git clone https://github.com/geopython/pywps-flask.git

Second, preparing the WSGI script for gunicorn. It is necessary that the WSGI script located in the pywps-flask service
is identified as a python module by gunicorn, this is done by creating a link with .py extention to the wsgi file:

$ cd /pywps-flask/wsgi
$ ln -s ./pywps.wsgi ./pywps_app.py

Gunicorn can already be tested by setting python path on the command options:

$ gunicorn3 -b 127.0.0.1:8081 --workers $((2*`nproc --all`)) --log-syslog --
→˓pythonpath /pywps-flask wsgi.pywps_app:application

The command will start a gunicorn instance on the localhost IP and port 8081, logging to systlog (/var/log/syslog), us-
ing pywps process folder /pywps-flask/processes and loading module wsgi.pywps_app and object/function application
for WSGI.

Note: Gunicorn uses a prefork model where the master process forks processes (workers) that willl accept incomming
connections. The –workers flag sets the number of processes, the default values is 1 but the recomended value is 2 or
4 times the number of CPU cores.
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Next step is to configure NGINX, by pointing to the WSGI server by changing the location paths of the default site
file but editing file /etc/nginx/sites-enabled as follows::

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;

#better to redirect / to wps application
location / {
return 301 /wps;
}

location /wps {
# with try_files active there will be problems
#try_files $uri $uri/ =404;

proxy_set_header Host $host;
proxy_redirect off;
proxy_set_header X-NginX-Proxy true;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_pass http://127.0.0.1:8081;
}

}

It is likely that part of the proxy configuration is already set on the file /etc/nginx/proxy.conf. Of course the neces-
satyrestart of nginx

$ service nginx restart

The service will now be available on the IP of the server or localhost

http://localhost/wps?request=GetCapabilities&service=wps

The current gunicorn instance was launched by the user. In a production server it is necessary to set gunicorn as a
service

On ubuntu 16.04 the systemcltd system requires a service file that will start the gunicorn3 service. The service file
(/lib/systemd/system/gunicorn.service) has to be configure as follows:

[Unit]
Description=gunicorn3 daemon
After=network.target

[Service]
User=www-data
Group=www-data
PIDFile=/var/run/gunicorn3.pid
Environment=WORKERS=3
ExecStart=/usr/bin/gunicorn3 -b 127.0.0.1:8081 --preload --workers $WORKERS --log-
→˓syslog --pythonpath /pywps-flask wsgi.pywps_app:application
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s TERM $MAINPID

[Install]
WantedBy=multi-user.target
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And then enable the service and then reload the systemctl daemon:

$ systemctl enable gunicorn3.service
$ systemctl daemon-reload
$ systemctl restart gunicorn3.service

And to check that everything is ok:

$ systemctl status gunicorn3.service

Note: Todo NGIX + uWSGI

1.6.4 Job queue starting

The job queue has to be started from command line:

pywps jobqueue --config /path/to/configuration/pywps.cfg

Testing the deployment of a PyWPS instance

Note: For the purpose of this documentation, it is assumed that you’ve installed PyWPS using the localhost server
domain name.

As stated, before, PyWPS should be available at http://localhost/pywps, we now can visit the url (or use wget):

# the --content-error parameter makes sure, error response is displayed
$ wget --content-error -O - "http://localhost/pywps"

The result should be an XML-encoded error message.

<?xml version="1.0" encoding="UTF-8"?>
<ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.
→˓w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/ows/1.1
→˓http://schemas.opengis.net/ows/1.1.0/owsExceptionReport.xsd" version="1.0.0">

<ows:Exception exceptionCode="MissingParameterValue" locator="service">
<ows:ExceptionText>service</ows:ExceptionText>

</ows:Exception>
</ows:ExceptionReport>

The server responded with the pywps.exceptions.MissingParameterValue exception, telling us that the
parameter service was not set. This is compliant with the OGC WPS standard, since each request mast have at least
the service and request parameters. We can say for now, that this PyWPS instance is properly deployed on the server,
since it returns proper exception report.

We now have to configure the instance by editing the pywps.cfg file and adding some processes.

1.7 Migrating from PyWPS 3.x to 4.x

The basic concept of PyWPS 3.x and 4.x remains the same: You deploy PyWPS once and can have many instances
with set of processes. It’s good practice to store processes in single files, although it’s not required.
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Note: Unluckily, there is not automatic tool for conversion of processes nor compatibility module. If you would
like to sponsor development of such module, please contact Project Steering Committee via PyWPS mailing list or
members of PSC directly.

1.7.1 Configuration file

Configuration file format remains the same (it’s the one used by configparser module). The sections are shift a bit, so
they are more alike another GeoPython project - pycsw.

See section Configuration.

1.7.2 Single process definition

The main principle remains the same between 3.x and 4.x branches: You have to define process class class and it’s
__init__ method with inputs and outputs.

The former execute() method can now be any function and is assigned as handler attribute.

handler function get’s two arguments: request and response. In requests, all input data are stored, response will have
output data assinged.

The main difference between 3.x and 4.x is, every input is list of inputs. The reason for such behaviour is, that you, as
user of PyWPS define input defined by type and identifier. When PyWPS process is turned to running job, there can
be usually more then one input with same identifier defined. Therefore instead of calling:

def execute(self):

...

# 3.x inputs
input = self.my_input.getValue()

you shall use first index of an input list:

def handler(request, response):

...

# 4.X inputs
input = request.inputs['my_input'][0].file

1.7.3 Inputs and outputs data manipulation

Btw, PyWPS Inputs do now have file, data, url and stream attributes. They are transparently converting one data-
representation-type to another. You can read input data from file-like object using stream or get directly the data into
variable with input.data. You can also save output data directly using output.data = { . . . .. }.

See more in Processes
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1.8 Deployment

While PyWPS 3.x was usually deployed as CGI application, PyWPS 4.x is configured as WSGI application. PyWPS
4.x is distributed without any processes or sample deploy script. We provide such example in our pywps-flask project.

Note: PYWPS_PROCESSES environment variable is gone, you have to assing processes to deploy script manually
(or semi-automatically).

For deployment script, standard WSGI application as used by flask microframework has to be defined, which get’s
two parameters: list of processes and configuration files:

from pywps.app.Service import Service
from processes.buffer import Buffer

processes = [Buffer()]

application = Service(processes, ['wps.cfg'])

Those 4 lines of code do deploy PyWPS with Buffer process. This gives you more flexible way, how to define
processes, since you can pass new variables and config values to each process class instance during it’s definition.

1.9 Sample processes

For sample processes, please refer to pywps-flask project on GITHub.

1.10 Needed steps summarization

1. Fix configuration file

2. Every processes needs new class and inputs and outputs definition

3. In execute method, you just need to review inputs and outputs data assignment, but the core of the method should
remain the same.

4. Replace shell or python-based CGI script with Flask-based WSGI script

1.11 PyWPS and external tools

1.11.1 GRASS GIS

PyWPS can handle all the management needed to setup temporal GRASS GIS environemtn (GRASS DBASE,
Location and Mapset) for you. You just need to configure it in the pywps.Process, using the parameter
grass_location, which can have 2 possible values:

epsg:[EPSG_CODE] New temporal location is created using the EPSG code given. PyWPS will create temporal
directory as GRASS Location and remove it after the WPS Execute response is constructed.

/path/to/grassdbase/location/ Existing absolute path to GRASS Location directory. PyWPS will create
temporal GRASS Mapset direcetory and remove it after the WPS Exceute response is constructed.

32 Chapter 1. Contents:

https://github.com/geopython/pywps-flask
http://flask.pocoo.org/
https://github.com/geopython/pywps-flask


PyWPS, Release 4.2.4

Then you can use Python - GRASS interfaces in the execute method, to make the work.

Note: Even PyWPS supports GRASS integration, the data still need to be imported using GRASS modules v.in.*
or r.in.* and also they have to be exported manually at the end.

def execute(request, response):
from grass.script import core as grass
grass.run_command('v.in.ogr', input=request.inputs["input"][0].file,
...)
...
grass.run_command('v.out.ogr', input="myvector", ...)

Also do not forget to set gisbase Configuration option.

1.11.2 OpenLayers WPS client

1.11.3 ZOO-Project

ZOO-Project provides both a server (C) and client (JavaScript) framework.

1.11.4 QGIS WPS Client

The QGIS WPS client provides a plugin with WPS support for the QGIS Desktop GIS.

1.12 Extensions

PyWPS has extensions to enhance its usability in special uses cases, for example to run Web Processing Services
at High Performance Compute (HPC) centers. These extensions are disabled by default. They need a modified
configuration and have additional software packages. The extensions are:

• Using batch job schedulers (distributed resource management) at HPC compute centers.

• Using container solutions like Docker in a cloud computing infrastructure.

1.12.1 Job Scheduler Extension

By default PyWPS executes all processes on the same machine as the PyWPS service is running on. Using the PyWPS
scheduler extension it becomes possible to delegate the execution of asynchronous processes to a scheduler system
like Slurm, Grid Engine and TORQUE. By enabling this extension one can handle the processing workload using an
existing scheduler system commonly found at High Performance Compute (HPC) centers.

Note: The PyWPS process implementations are not changed by using the scheduler extension.

To activate this extension you need to edit the pywps.cfg configuration file and make the following changes:

[processing]
mode = scheduler
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The scheduler extension uses the DRMAA library to talk to the different scheduler systems. Install the additional
Python dependencies using pip:

$ pip install -r requirements-processing.txt # drmaa

If you are using the conda package manager you can install the dependencies with:

$ conda install drmaa dill

The package dill is an enhanced version of the Python pickle module for serializing and de-serializing Python objects.

Warning: In addition you need to install and configure the drmaa modules for your scheduler system on the
machine PyWPS is running on. Follow the instructions given in the DRMAA documentation and by your scheduler
system installation guide.

Note: See an example on how to use this extension with a Slurm batch system in a docker demo.

Note: COWS WPS has a scheduler extension for Sun Grid Engine (SGE).

Interactions of PyWPS with a scheduler system

The PyWPS scheduler extension uses the Python dill library to dump and load the processing job to/from filesystem.
The batch script executed on the scheduler system calls the PyWPS joblauncher script with the dumped job status
and executes the job (no WPS service running on scheduler). The job status is updated on the filesystem. Both the
PyWPS service and the joblauncher script use the same PyWPS configuration. The scheduler assumes that the
PyWPS server has a shared filesystem with the scheduler system so that XML status documents and WPS outputs
can be found at the same file location. See the interaction diagram how the communication between PyWPS and the
scheduler works.

The following image shows an example of using the scheduler extension with Slurm.

1.12.2 Docker Container Extension

Todo: This extension is on our wish list. In can be used to encapsulate and control the execution of a process. It
enhances also the use case of Web Processing Services in a cloud computing infrastructure.

1.13 PyWPS API Doc

1.13.1 Process

class pywps.Process(handler, identifier, title, abstract=”, keywords=[], profile=[], meta-
data=[], inputs=[], outputs=[], version=’None’, store_supported=False,
status_supported=False, grass_location=None, translations=None)

Parameters
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Fig. 1: Interaction diagram for PyWPS scheduler extension.

Fig. 2: Example of PyWPS scheduler extension usage with Slurm.
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• handler – A callable that gets invoked for each incoming request. It should accept a
single pywps.app.WPSRequest argument and return a pywps.app.WPSResponse
object.

• identifier (string) – Name of this process.

• title (string) – Human readable title of process.

• abstract (string) – Brief narrative description of the process.

• keywords (list) – Keywords that characterize a process.

• inputs – List of inputs accepted by this process. They should be LiteralInput and
ComplexInput and BoundingBoxInput objects.

• outputs – List of outputs returned by this process. They should be LiteralOutput
and ComplexOutput and BoundingBoxOutput objects.

• metadata – List of metadata advertised by this process. They should be pywps.app.
Common.Metadata objects.

• translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 lan-
guage code, and the nested mapping contains translated strings accessible by a string prop-
erty. e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

Exceptions you can raise in the process implementation to show a user-friendly error message.

class pywps.app.exceptions.ProcessError(msg=None)
pywps.app.exceptions.ProcessError is an Exception you can intentionally raise in a process to
provide a user-friendly error message. The error message gets validated (3<= message length <=144) and only
alpha numeric characters and a few special characters are allowed. The special characters are: ., :, !, ?, =, ,, -.

1.13.2 Inputs and outputs

class pywps.validator.mode.MODE
Validation mode enumeration

NONE = 0

SIMPLE = 1

STRICT = 2

VERYSTRICT = 3

Most of the inputs nad outputs are derived from the IOHandler class

class pywps.inout.basic.IOHandler(workdir=None, mode=0)
Base IO handling class subclassed by specialized versions: FileHandler, UrlHandler, DataHandler, etc.

If the specialized handling class is not known when the object is created, instantiate the object with IOHandler.
The first time the file, url or data attribute is set, the associated subclass will be automatically registered. Once
set, the specialized subclass cannot be switched.

Parameters

• workdir – working directory, to save temporal file objects in.

• mode – MODE validation mode.

file [str] Filename on the local disk.

url [str] Link to an online resource.
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stream [FileIO] A readable object.

data [object] A native python object (integer, string, float, etc)

base64 [str] A base 64 encoding of the data.

>>> # setting up
>>> import os
>>> from io import RawIOBase
>>> from io import FileIO
>>>
>>> ioh_file = IOHandler(workdir=tmp)
>>> assert isinstance(ioh_file, IOHandler)
>>>
>>> # Create test file input
>>> fileobj = open(os.path.join(tmp, 'myfile.txt'), 'w')
>>> fileobj.write('ASDF ASFADSF ASF ASF ASDF ASFASF')
>>> fileobj.close()
>>>
>>> # testing file object on input
>>> ioh_file.file = fileobj.name
>>> assert isinstance(ioh_file, FileHandler
>>> assert ioh_file.file == fileobj.name
>>> assert isinstance(ioh_file.stream, RawIOBase)
>>> # skipped assert isinstance(ioh_file.memory_object, POSH)
>>>
>>> # testing stream object on input
>>> ioh_stream = IOHandler(workdir=tmp)
>>> assert ioh_stream.workdir == tmp
>>> ioh_stream.stream = FileIO(fileobj.name,'r')
>>> assert isinstance(ioh_stream, StreamHandler)
>>> assert open(ioh_stream.file).read() == ioh_file.stream.read()
>>> assert isinstance(ioh_stream.stream, RawIOBase)

LiteralData

class pywps.LiteralInput(identifier, title=None, data_type=None, workdir=None, abstract=”, key-
words=[], metadata=[], uoms=None, min_occurs=1, max_occurs=1,
mode=1, allowed_values=None, default=None, default_type=3, transla-
tions=None)

Parameters

• identifier (str) – The name of this input.

• title (str) – Title of the input

• data_type (pywps.inout.literaltypes.LITERAL_DATA_TYPES) – data
type

• workdir (str) – working directory, to save temporary file objects in.

• abstract (str) – Input abstract

• keywords (list) – Keywords that characterize this input.

• metadata (list) – TODO

• uoms (str) – units

• min_occurs (int) – minimum occurence
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• max_occurs (int) – maximum occurence

• mode (pywps.validator.mode.MODE) – validation mode (none to strict)

• allowed_values (pywps.inout.literaltypes.AnyValue) – or pywps.
inout.literaltypes.AllowedValue object

• metadata – List of metadata advertised by this process. They should be pywps.app.
Common.Metadata objects.

• translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 lan-
guage code, and the nested mapping contains translated strings accessible by a string prop-
erty. e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

class pywps.LiteralOutput(identifier, title, data_type=’string’, abstract=”, keywords=[], meta-
data=[], uoms=None, mode=1, translations=None)

Parameters

• identifier – The name of this output.

• title (str) – Title of the input

• data_type (pywps.inout.literaltypes.LITERAL_DATA_TYPES) – data
type

• abstract (str) – Input abstract

• uoms (str) – units

• mode (pywps.validator.mode.MODE) – validation mode (none to strict)

• metadata – List of metadata advertised by this process. They should be pywps.app.
Common.Metadata objects.

• translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 lan-
guage code, and the nested mapping contains translated strings accessible by a string prop-
erty. e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

class pywps.inout.literaltypes.AnyValue
Specifies that any value is allowed for this quantity.

class pywps.inout.literaltypes.AllowedValue(allowed_type=None, value=None, min-
val=None, maxval=None, spacing=None,
range_closure=’closed’)

List of all valid values and/or ranges of values for this quantity. The values are evaluated in literal validator
functions

Parameters

• allowed_type (pywps.validator.allowed_value.ALLOWEDVALUETYPE) –
VALUE or RANGE

• value – single value

• minval – minimal value in case of Range

• maxval – maximal value in case of Range

• spacing – spacing in case of Range

• range_closure (pywps.input.literaltypes.RANGECLOSURETYPE) –

class pywps.inout.literaltypes.ValuesReference(reference=None, values_form=None)
Reference to list of all valid values and/or ranges of values for this quantity. NOTE: Validation of values is not
implemented.
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Param reference: URL from which this set of ranges and values can be retrieved

Param values_form: Reference to a description of the mimetype, encoding, and schema used for
this set of values and ranges.

pywps.inout.literaltypes.LITERAL_DATA_TYPES = ('float', 'boolean', 'integer', 'string', 'positiveInteger', 'anyURI', 'time', 'date', 'dateTime', 'scale', 'angle', 'nonNegativeInteger')
Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple. If iterable is specified the tuple is initialized
from iterable’s items.

If the argument is a tuple, the return value is the same object.

ComplexData

class pywps.ComplexInput(identifier, title, supported_formats, data_format=None, abstract=”, key-
words=[], workdir=None, metadata=[], min_occurs=1, max_occurs=1,
mode=0, default=None, default_type=3, translations=None)

Complex data input

Parameters

• identifier (str) – The name of this input.

• title (str) – Title of the input

• supported_formats (pywps.inout.formats.Format) – List of supported for-
mats

• data_format (pywps.inout.formats.Format) – default data format

• abstract (str) – Input abstract

• keywords (list) – Keywords that characterize this input.

• workdir (str) – working directory, to save temporary file objects in.

• metadata (list) – TODO

• min_occurs (int) – minimum occurrence

• max_occurs (int) – maximum occurrence

• mode (pywps.validator.mode.MODE) – validation mode (none to strict)

• translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 lan-
guage code, and the nested mapping contains translated strings accessible by a string prop-
erty. e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

class pywps.ComplexOutput(identifier, title, supported_formats=None, data_format=None,
abstract=”, keywords=[], workdir=None, metadata=None,
as_reference=False, mode=0, translations=None)

Parameters

• identifier – The name of this output.

• title – Readable form of the output name.

• supported_formats ((pywps.inout.formats.Format, )) – List of sup-
ported formats. The first format in the list will be used as the default.

• abstract (str) – Description of the output

• mode (pywps.validator.mode.MODE) – validation mode (none to strict)
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• metadata – List of metadata advertised by this process. They should be pywps.app.
Common.Metadata objects.

• translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 lan-
guage code, and the nested mapping contains translated strings accessible by a string prop-
erty. e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

class pywps.Format(mime_type, schema=None, encoding=None, validate=None, extension=None)
Input/output format specification

Predefined Formats are stored in pywps.inout.formats.FORMATS

Parameters

• mime_type (str) – mimetype definition

• schema (str) – xml schema definition

• encoding (str) – base64 or not

• validate (function) – function, which will perform validation. e.g.

• mode (number) – validation mode

• extension (str) – file extension

pywps.inout.formats.FORMATS
FORMATS(GEOJSON, JSON, SHP, GML, GPX, METALINK, META4, KML, KMZ, GEOTIFF, WCS,
WCS100, WCS110, WCS20, WFS, WFS100, WFS110, WFS20, WMS, WMS130, WMS110, WMS100, TEXT,
DODS, NETCDF, NCML, LAZ, LAS, ZIP, XML) List of out of the box supported formats. User can add custom
formats to the array.

pywps.validator.complexvalidator.validategml(data_input, mode)
GML validation function

Parameters

• data_input – ComplexInput

• mode (pywps.validator.mode.MODE) –

This function validates GML input based on given validation mode. Following happens, if mode parameter is
given:

MODE.NONE it will return always True

MODE.SIMPLE the mimetype will be checked

MODE.STRICT GDAL/OGR is used for getting the proper format.

MODE.VERYSTRICT the lxml.etree is used along with given input schema and the GML file is properly
validated against given schema.

BoundingBoxData

class pywps.BoundingBoxInput(identifier, title, crss=None, abstract=”, keywords=[], di-
mensions=2, workdir=None, metadata=[], min_occurs=1,
max_occurs=1, mode=0, default=None, default_type=3, transla-
tions=None)

Parameters

• identifier (string) – The name of this input.

• title (string) – Human readable title
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• abstract (string) – Longer text description

• crss – List of supported coordinate reference system (e.g. [‘EPSG:4326’])

• keywords (list) – Keywords that characterize this input.

• dimensions (int) – 2 or 3

• workdir (str) – working directory, to save temporary file objects in.

• metadata (list) – TODO

• min_occurs (int) – how many times this input occurs

• max_occurs (int) – how many times this input occurs

• metadata – List of metadata advertised by this process. They should be pywps.app.
Common.Metadata objects.

• translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 lan-
guage code, and the nested mapping contains translated strings accessible by a string prop-
erty. e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

class pywps.BoundingBoxOutput(identifier, title, crss, abstract=”, keywords=[], dimen-
sions=2, metadata=[], min_occurs=’1’, max_occurs=’1’,
as_reference=False, mode=0, translations=None)

Parameters

• identifier – The name of this input.

• title (str) – Title of the input

• abstract (str) – Input abstract

• crss – List of supported coordinate reference system (e.g. [‘EPSG:4326’])

• dimensions (int) – number of dimensions (2 or 3)

• min_occurs (int) – minimum occurence

• max_occurs (int) – maximum occurence

• mode (pywps.validator.mode.MODE) – validation mode (none to strict)

• metadata – List of metadata advertised by this process. They should be pywps.app.
Common.Metadata objects.

• translations (dict[str,dict[str,str]]) – The first key is the RFC 4646 lan-
guage code, and the nested mapping contains translated strings accessible by a string prop-
erty. e.g. {“fr-CA”: {“title”: “Mon titre”, “abstract”: “Une description”}}

Request and response objects

pywps.response.status.WPS_STATUS
WPSStatus(UNKNOWN, ACCEPTED, STARTED, PAUSED, SUCCEEDED, FAILED) Process status infor-
mation

class pywps.app.WPSRequest(http_request=None)

operation
Type of operation requested by the client. Can be getcapabilities, describeprocess or execute.
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http_request
Original Werkzeug HTTPRequest object.

inputs
A MultiDict object containing input values sent by the client.

check_accepted_versions(acceptedversions)

Parameters acceptedversions – string

check_and_set_language(language)
set this.language

check_and_set_version(version)
set this.version

json
Return JSON encoded representation of the request

class pywps.response.WPSResponse(wps_request, uuid=None, version=’1.0.0’)

status
Information about currently running process status pywps.response.status.STATUS

Processing

pywps.processing.Process(process, wps_request, wps_response)
Factory method (looking like a class) to return the configured processing class.

Returns instance of pywps.processing.Processing

class pywps.processing.Processing(process, wps_request, wps_response)
Processing is an interface for running jobs.

class pywps.processing.Job(process, wps_request, wps_response)
Job represents a processing job.

classmethod from_json(value)
init this request from json back again

Parameters value – the json (not string) representation

json
Return JSON encoded representation of the request

Refer Exceptions for their description.

1.14 Contributing to PyWPS

The PyWPS project openly welcomes contributions (bug reports, bug fixes, code enhancements/features, etc.). This
document will outline some guidelines on contributing to PyWPS. As well, the PyWPS community is a great place to
get an idea of how to connect and participate in the PyWPS community and development.

PyWPS has the following modes of contribution:

• GitHub Commit Access

• GitHub Pull Requests
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1.14.1 Code of Conduct

Contributors to this project are expected to act respectfully towards others in accordance with the OSGeo Code of
Conduct.

1.14.2 Contributions and Licensing

Contributors are asked to confirm that they comply with the project license guidelines.

GitHub Commit Access

• proposals to provide developers with GitHub commit access shall be emailed to the pywps-devel mailing list.
Proposals shall be approved by the PyWPS development team. Committers shall be added by the project admin

• removal of commit access shall be handled in the same manner

• each committer must send an email to the PyWPS mailing list agreeing to the license guidelines (see Contribu-
tions and Licensing Agreement Template). This is only required once

• each committer shall be listed in https://github.com/geopython/pywps/blob/master/COMMITTERS.txt

GitHub Pull Requests

• pull requests can provide agreement to license guidelines as text in the pull request or via email to the PyWPS
mailing list (see Contributions and Licensing Agreement Template). This is only required for a contributor’s
first pull request. Subsequent pull requests do not require this step

• pull requests may include copyright in the source code header by the contributor if the contribution is significant
or the contributor wants to claim copyright on their contribution

• all contributors shall be listed at https://github.com/geopython/pywps/graphs/contributors

• unclaimed copyright, by default, is assigned to the main copyright holders as specified in https://github.com/
geopython/pywps/blob/master/LICENSE.txt

• make sure, the tests are passing on [travis-ci](https://travis-ci.org/geopython/pywps) sevice, as well as on your
local machine tox:

tox

Contributions and Licensing Agreement Template

Hi all, I'd like to contribute <feature X|bugfix Y|docs|something else> to
PyWPS. I confirm that my contributions to PyWPS will be compatible with the
PyWPS license guidelines at the time of contribution.

1.14.3 GitHub

Code, tests, documentation, wiki and issue tracking are all managed on GitHub. Make sure you have a GitHub account.

1.14.4 Code Overview

• the PyWPS wiki documents an overview of the codebase [TODO]
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1.14.5 Documentation

• documentation is managed in docs/, in reStructuredText format

• Sphinx is used to generate the documentation

• See the reStructuredText Primer on rST markup and syntax

1.14.6 Bugs

The PyWPS issue tracker is the place to report bugs or request enhancements. To submit a bug be sure to specify the
PyWPS version you are using, the appropriate component, a description of how to reproduce the bug, as well as the
Python version and the platform.

1.14.7 Forking PyWPS

Contributions are most easily managed via GitHub pull requests. Fork PyWPS into your own GitHub repository to be
able to commit your work and submit pull requests.

1.14.8 Development

GitHub Commit Guidelines

• enhancements and bug fixes should be identified with a GitHub issue

• commits should be granular enough for other developers to understand the nature / implications of the change(s)

• for trivial commits that do not need Travis CI to run, include [ci skip] as part of the commit message

• non-trivial Git commits shall be associated with a GitHub issue. As documentation can always be improved,
tickets need not be opened for improving the docs

• Git commits shall include a description of changes

• Git commits shall include the GitHub issue number (i.e. #1234) in the Git commit log message

• all enhancements or bug fixes must successfully pass all OGC CITE tests before they are committed

• all enhancements or bug fixes must successfully pass all tests before they are committed

• enhancements which can be demonstrated from the PyWPS tests should be accompanied by example WPS
request XML or KVP

Coding Guidelines

• PyWPS instead of pywps, pyWPS, Pywps, PYWPS

• always code with PEP 8 conventions

• always run source code through flake8

• for exceptions which make their way to OGC ows:ExceptionReport XML, always specify the appropriate
locator and code parameters
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Submitting a Pull Request

This section will guide you through steps of working on PyWPS. This section assumes you have forked PyWPS into
your own GitHub repository. Note that master is the main development branch in PyWPS. for stable releases and
managed exclusively by the PyWPS team.

# setup a virtualenv
virtualenv mypywps && cd mypywps
. ./bin/activate

# clone the repository locally
git clone git@github.com:USERNAME/pywps.git
cd pywps
pip install -e . && pip install -r requirements.txt

# add the main PyWPS development branch to keep up to date with upstream changes
git remote add upstream https://github.com/geopython/pywps.git
git pull upstream master

# create a local branch off master
# The name of the branch should include the issue number if it exists
git branch issue-72
git checkout issue-72

# make code/doc changes
git commit -am 'fix xyz (#72)'
git push origin issue-72

Your changes are now visible on your PyWPS repository on GitHub. You are now ready to create a pull request. A
member of the PyWPS team will review the pull request and provide feedback / suggestions if required. If changes
are required, make them against the same branch and push as per above (all changes to the branch in the pull request
apply).

The pull request will then be merged by the PyWPS team. You can then delete your local branch (on GitHub), and
then update your own repository to ensure your PyWPS repository is up to date with PyWPS master:

git checkout master
git pull upstream master

1.14.9 Release Packaging

Release packaging notes are maintained at https://github.com/geopython/pywps/wiki/ReleasePackaging

1.15 Exceptions

PyWPS will throw exceptions based on the error occurred. The exceptions will point out what is missing or what went
wrong as accurately as possible.

Here is the list of Exceptions and HTTP error codes associated with them:

class pywps.exceptions.NoApplicableCode(description, locator=”, code=400)
No applicable code exception implementation

also
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Base exception class

class pywps.exceptions.InvalidParameterValue(description, locator=”, code=400)
Invalid parameter value exception implementation

class pywps.exceptions.MissingParameterValue(description, locator=”, code=400)
Missing parameter value exception implementation

class pywps.exceptions.FileSizeExceeded(description, locator=”, code=400)
File size exceeded exception implementation

class pywps.exceptions.VersionNegotiationFailed(description, locator=”, code=400)
Version negotiation exception implementation

class pywps.exceptions.OperationNotSupported(description, locator=”, code=400)
Operation not supported exception implementation

class pywps.exceptions.StorageNotSupported(description, locator=”, code=400)
Storage not supported exception implementation

class pywps.exceptions.NotEnoughStorage(description, locator=”, code=400)
Storage not supported exception implementation

1.16 Indices and tables

• genindex

• modindex

• search

46 Chapter 1. Contents:



Python Module Index

p
pywps, 34
pywps.exceptions, 45

47



PyWPS, Release 4.2.4

48 Python Module Index



Index

A
AllowedValue (class in pywps.inout.literaltypes), 38
AnyValue (class in pywps.inout.literaltypes), 38

B
BoundingBoxInput (class in pywps), 40
BoundingBoxOutput (class in pywps), 41

C
check_accepted_versions() (py-

wps.app.WPSRequest method), 42
check_and_set_language() (py-

wps.app.WPSRequest method), 42
check_and_set_version() (py-

wps.app.WPSRequest method), 42
ComplexInput (class in pywps), 39
ComplexOutput (class in pywps), 39

D
DocExampleProcess (class in pywps.tests), 24

E
environment variable

PYTHONPATH, 14

F
FileSizeExceeded (class in pywps.exceptions), 46
Format (class in pywps), 40
FORMATS (in module pywps.inout.formats), 40
from_json() (pywps.processing.Job class method), 42

H
http_request (pywps.app.WPSRequest attribute), 41

I
inputs (pywps.app.WPSRequest attribute), 42
InvalidParameterValue (class in py-

wps.exceptions), 46
IOHandler (class in pywps.inout.basic), 36

J
Job (class in pywps.processing), 42
json (pywps.app.WPSRequest attribute), 42
json (pywps.processing.Job attribute), 42

L
LITERAL_DATA_TYPES (in module py-

wps.inout.literaltypes), 39
LiteralInput (class in pywps), 37
LiteralOutput (class in pywps), 38

M
MissingParameterValue (class in py-

wps.exceptions), 46
MODE (class in pywps.validator.mode), 36

N
NoApplicableCode (class in pywps.exceptions), 45
NONE (pywps.validator.mode.MODE attribute), 36
NotEnoughStorage (class in pywps.exceptions), 46

O
operation (pywps.app.WPSRequest attribute), 41
OperationNotSupported (class in py-

wps.exceptions), 46

P
Process (class in pywps), 34
Process() (in module pywps.processing), 42
ProcessError (class in pywps.app.exceptions), 36
Processing (class in pywps.processing), 42
PYTHONPATH, 14
pywps (module), 34
pywps.exceptions (module), 45

S
SIMPLE (pywps.validator.mode.MODE attribute), 36
status (pywps.response.WPSResponse attribute), 42

49



PyWPS, Release 4.2.4

StorageNotSupported (class in pywps.exceptions),
46

STRICT (pywps.validator.mode.MODE attribute), 36

V
validategml() (in module py-

wps.validator.complexvalidator), 40
ValuesReference (class in pywps.inout.literaltypes),

38
VersionNegotiationFailed (class in py-

wps.exceptions), 46
VERYSTRICT (pywps.validator.mode.MODE attribute),

36

W
WPS_STATUS (in module pywps.response.status), 41
WPSRequest (class in pywps.app), 41
WPSResponse (class in pywps.response), 42

50 Index


	Contents:
	OGC Web Processing Service (OGC WPS)
	Process
	Data inputs and outputs
	Passing data to process instance
	Synchronous versus asynchronous process request
	Process status
	Request encoding, HTTP GET and POST

	PyWPS
	PyWPS philosophy
	Why is PyWPS there
	PyWPS History

	Installation
	Dependencies and requirements
	Download and install
	Initialize database
	The Flask service and its sample processes

	Configuration
	[metadata:main]
	[server]
	[processing]
	[logging]
	[grass]
	[jobqueue]
	[s3]

	Processes
	Writing a Process
	Example vector buffer process
	Declaring inputs and outputs
	Accessing the inputs and outputs in the handler method
	Progress and status report
	Returning large data
	Returning multiple files
	Process Exceptions
	Process deployment
	Running the dev server
	Supporting multiple languages
	Automated process documentation

	Deployment to a production server
	Service module
	Queue module
	Installation
	Job queue starting

	Migrating from PyWPS 3.x to 4.x
	Configuration file
	Single process definition
	Inputs and outputs data manipulation

	Deployment
	Sample processes
	Needed steps summarization
	PyWPS and external tools
	GRASS GIS
	OpenLayers WPS client
	ZOO-Project
	QGIS WPS Client

	Extensions
	Job Scheduler Extension
	Docker Container Extension

	PyWPS API Doc
	Process
	Inputs and outputs

	Contributing to PyWPS
	Code of Conduct
	Contributions and Licensing
	GitHub
	Code Overview
	Documentation
	Bugs
	Forking PyWPS
	Development
	Release Packaging

	Exceptions
	Indices and tables

	Python Module Index
	Index

